Brutsaert, W., 2015: A generalized complementary principle with physical constraints for land-surface evaporation. Water Resour. Res., 51(10), 8087−8093, https://doi.org/10.1002/2015WR017720.
Chen, H., and Coauthors, 2013: The impacts of climate change and human activities on biogeochemical cycles on the Qinghai-Tibetan Plateau. Global Change Biology, 19(10), 2940−2955, https://doi.org/10.1111/gcb.12277.
Dias, L. C. P., M. N. Macedo, M. H. Costa, M. T. Coe, and C. Neill, 2015: Effects of land cover change on evapotranspiration and streamflow of small catchments in the upper Xingu river basin, central Brazil. J. Hydrol., 4, 108−122, https://doi.org/10.1016/j.ejrh.2015.05.010.
Douglas, E. M., J. M. Jacobs, D. M. Sumner, and R. L. Ray, 2009: A comparison of models for estimating potential evapotranspiration for Florida land cover types. J. Hydrol., 373(3-4), 366−376, https://doi.org/10.1016/j.jhydrol.2009.04.029.
El Masri, B., and Coauthors, 2019: Carbon and water use efficiencies: A comparative analysis of ten terrestrial ecosystem models under changing climate. Scientific Reports, 9(1), 14680, https://doi.org/10.1038/s41598-019-50808-7.
Evans, S. G., S. M. Ge, C. I. Voss, and N. P. Molotch, 2018: The role of frozen soil in groundwater discharge predictions for warming alpine watersheds. Water Resour. Res., 54(3), 1599−1615, https://doi.org/10.1002/2017WR022098.
Fang, Q. Q., G. Q. Wang, T. X. Liu, B. L. Xue, W. C. Sun, and S. Shrestha, 2020: Unraveling the sensitivity and nonlinear response of water use efficiency to the water–energy balance and underlying surface condition in a semiarid basin. Science of the Total Environment, 699, 134405, https://doi.org/10.1016/j.scitotenv.2019.134405.
Guo, L. M., and Coauthors, 2019: Response of ecosystem water use efficiency to drought over China during 1982−2015: Spatiotemporal variability and resilience. Forests, 10(7), 598, https://doi.org/10.3390/f10070598.
Hagedorn, R., F. J. Doblas-Reyes, and T. N. Palmer, 2005: The rationale behind the success of multi-model ensembles in seasonal forecasting—I. basic concept. Tellus A: Dynamic Meteorology and Oceanography, 57(3), 219−233, https://doi.org/10.3402/tellusa.v57i3.14657.
Huang, M. T., and Coauthors, 2015: Change in terrestrial ecosystem water-use efficiency over the last three decades. Global Change Biology, 21(6), 2366−2378, https://doi.org/10.1111/gcb.12873.
Huntzinger, D. N., and Coauthors, 2013: The North American carbon program multi-scale synthesis and terrestrial model intercomparison project—Part 1: Overview and experimental design. Geoscientific Model Development, 6, 2121−2133, https://doi.org/10.5194/gmd-6-2121-2013.
Jia, B. H., and Coauthors, 2020: Impacts of land use change and elevated CO2 on the interannual variations and seasonal cycles of gross primary productivity in China. Earth System Dynamics, 11(1), 235−249, https://doi.org/10.5194/esd-11-235-2020.
Jung, M., and Coauthors, 2011: Global patterns of land-atmosphere fluxes of carbon dioxide, latent heat, and sensible heat derived from eddy covariance, satellite, and meteorological observations. J. Geophys. Res., 116(G3), G00J07, https://doi.org/10.1029/2010JG001566.
Jung M., and Coauthors, 2017: Compensatory water effects link yearly global land CO2 sink changes to temperature. Nature, 541(7638), 516−520, https://doi.org/10.1038/nature20780.
Knapp, A. K., and M. D. Smith, 2001: Variation among biomes in temporal dynamics of aboveground primary production. Science, 291(5503), 481−484, https://doi.org/10.1126/science.291.5503.481.
Lamsal, P., L. Kumar, F. Shabani, and K. Atreya, 2017: The greening of the Himalayas and Tibetan Plateau under climate change. Global and Planetary Change, 159, 77−92, https://doi.org/10.1016/j.gloplacha.2017.09.010.
Lavergne, A., H. Graven, M. G. De Kauwe, T. F. Keenan, B. E. Medlyn, and I. C. Prentice, 2019: Observed and modelled historical trends in the water-use efficiency of plants and ecosystems. Global Change Biology, 25, 2242−2257, https://doi.org/10.1111/gcb.14634.
Li, G., F. M. Zhang, Y. S. Jing, Y. B. Liu, and G. Sun, 2017: Response of evapotranspiration to changes in land use and land cover and climate in China during 2001−2013. Science of the Total Environment, 596−597, 256−265,
Li, X.-L., J. Gao, G. Brierley, Y.-M. Qiao, J. Zhang, and Y.-W. Yang, 2013: Rangeland degradation on the Qinghai-Tibet Plateau: Implications for rehabilitation. Land Degradation & Development, 24(1), 72−80, https://doi.org/10.1002/ldr.1108.
Liu, J. G., B. H. Jia, Z. H. Xie, and C. X. Shi, 2016: Ensemble simulation of land evapotranspiration in China based on a multi-forcing and multi-model approach. Adv. Atmos. Sci., 33(6), 673−684, https://doi.org/10.1007/s00376-016-5213-0.
Liu, X. F., X. M. Feng, and B. J. Fu, 2020: Changes in global terrestrial ecosystem water use efficiency are closely related to soil moisture. Science of the Total Environment, 698, 134165, https://doi.org/10.1016/j.scitotenv.2019.134165.
Liu, Y. B., W. M. Ju, H. L. He, S. Q. Wang, R. Sun, and Y. D. Zhang, 2013a: Changes of net primary productivity in China during recent 11 years detected using an ecological model driven by MODIS data. Frontiers of Earth Science, 7(1), 112−127, https://doi.org/10.1007/s11707-012-0348-5.
Liu, Y., and Coauthors, 2013b: Evapotranspiration and water yield over China’s landmass from 2000 to 2010. Hydrology and Earth System Sciences, 17(12), 4957−4980, https://doi.org/10.5194/hess-17-4957-2013.
Luo, X., B. H. Jia, and X. Lai, 2020: Contributions of climate change, land use change and CO2 to changes in the gross primary productivity of the Tibetan Plateau. Atmos. Ocean. Sci. Lett., 13(1), 8−15, https://doi.org/10.1080/16742834.2020.1695515.
Ma, N., J. Szilagyi, Y. S. Zhang, and W. B. Liu, 2019: Complementary-relationship-based modeling of terrestrial evapotranspiration across China during 1982−2012: Validations and spatiotemporal analyses. J. Geophys. Res., 124(8), 4326−4351, https://doi.org/10.1029/2018JD029850.
Niu, S. L., X. R. Xing, Z. Zhang, J. Y. Xia, X. H. Zhou, B. Song, L. H. Li, and S. Q. Wan, 2011: Water-use efficiency in response to climate change: From leaf to ecosystem in a temperate steppe. Global Change Biology, 17(2), 1073−1082, https://doi.org/10.1111/j.1365-2486.2010.02280.x.
Ponce-Campos, G. E., and Coauthors, 2013: Ecosystem resilience despite large-scale altered hydroclimatic conditions. Nature, 494(7437), 349−352, https://doi.org/10.1038/nature11836.
Running, S. W., P. E. Thornton, R. Nemani, and J. M. Glassy, 2000: Global terrestrial gross and net primary productivity from the earth observing system. Methods in Ecosystem Science, O. E. Sala et al., Eds., Springer, 44−57,
Schwalm, C. R., and Coauthors, 2015: Toward “optimal” integration of terrestrial biosphere models. Geophys. Res. Lett., 42(11), 4418−4428, https://doi.org/10.1002/2015GL064002.
Sharma, A., and M. K. Goyal, 2018a: Assessment of ecosystem resilience to hydroclimatic disturbances in India. Global Change Biology, 24(2), e432−e441, https://doi.org/10.1111/gcb.13874.
Sharma, A., and M. K. Goyal, 2018b: District-level assessment of the ecohydrological resilience to hydroclimatic disturbances and its controlling factors in India. J. Hydrol., 564, 1048−1057, https://doi.org/10.1016/j.jhydrol.2018.07.079.
Sheffield, J., E. F. Wood, and M. L. Roderick, 2012: Little change in global drought over the past 60 years. Nature, 491(7424), 435−438, https://doi.org/10.1038/nature11575.
Shen, H., and Coauthors, 2019: Grazing enhances plant photosynthetic capacity by altering soil nitrogen in alpine grasslands on the Qinghai-Tibetan plateau. Agriculture, Ecosystems & Environment, 280, 161−168, https://doi.org/10.1016/j.agee.2019.04.029.
Siegel, A. F., and Wagner, M. R., 2022: Multiple regression: Predicting one variable from several others. Practical Business Statistics, 8th ed., A. F. Siegel and M. R. Wagner, Eds., Academic Press, 371−431,
Song, L. N., J. J. Zhu, J. X. Zhang, T. Zhang, K. Wang, G. C. Wang, and J. H. Liu, 2019: Effect of drought and topographic position on depth of soil water extraction of Pinus sylvestris L. var. mongolica Litv. trees in a semiarid sandy region, Northeast China. Forests, 10(5), 370, https://doi.org/10.3390/f10050370.
Teuling, A. J., and Coauthors, 2013: Evapotranspiration amplifies European summer drought. Geophys. Res. Lett., 40(10), 2071−2075, https://doi.org/10.1002/grl.50495.
Tramontana, G., and Coauthors, 2016: Predicting carbon dioxide and energy fluxes across global FLUXNET sites with regression algorithms. Biogeosciences, 13(14), 4291−4313, https://doi.org/10.5194/bg-13-4291-2016.
Walker, B., C. S. Holling, S. R. Carpenter, and A. Kinzig, 2004: Resilience, adaptability and transformability in social-ecological systems. Ecology and Society, 9(2), 5, https://doi.org/10.5751/ES-00650-090205.
Wang, L. M., M. Y. Li, J. X. Wang, X. G. Li, and L. C. Wang, 2020: An analytical reductionist framework to separate the effects of climate change and human activities on variation in water use efficiency. Science of the Total Environment, 727, 138306, https://doi.org/10.1016/j.scitotenv.2020.138306.
Wang, W. G., J. X. Li, Z. B. Yu, Y. M. Ding, W. Q. Xing, and W. J. Lu, 2018: Satellite retrieval of actual evapotranspiration in the Tibetan Plateau: Components partitioning, multidecadal trends and dominated factors identifying. J. Hydrol., 559, 471−485, https://doi.org/10.1016/j.jhydrol.2018.02.065.
Wei, Y., and Coauthors, 2014: The North American carbon program multi-scale synthesis and terrestrial model intercomparison project—Part 2: Environmental driver data. Geoscientific Model Development, 7, 2875−2893, https://doi.org/10.5194/gmd-7-2875-2014.
Xia, J. Y., and Coauthors, 2017: Terrestrial ecosystem model performance in simulating productivity and its vulnerability to climate change in the northern permafrost region. J. Geophys. Res., 122, 430−446, https://doi.org/10.1002/2016JG003384.
Xu, H. J., X. P. Wang, and X. X. Zhang, 2016: Alpine grasslands response to climatic factors and anthropogenic activities on the Tibetan Plateau from 2000 to 2012. Ecological Engineering, 92, 251−259, https://doi.org/10.1016/j.ecoleng.2016.04.005.
Yang, Y. T., and Coauthors, 2016: Contrasting responses of water use efficiency to drought across global terrestrial ecosystems. Scientific Reports, 6(1), 23284, https://doi.org/10.1038/srep23284.
Yao, T. D., and Coauthors, 2017: From Tibetan Plateau to third pole and pan-third pole. Bulletin of the Chinese Academy of Sciences, 32(9), 924−931, https://doi.org/10.16418/j.issn.1000-3045.2017.09.001. (in Chinese with English abstract
Yu, G. R., Z. Chen, S. L. Piao, C. H. Peng, P. Ciais, Q. F. Wang, X. R. Li, and X. J. Zhu, 2014: High carbon dioxide uptake by subtropical forest ecosystems in the East Asian monsoon region. Proceedings of the National Academy of Sciences of the United States of America, 111(13), 4910−4915, https://doi.org/10.1073/pnas.1317065111.
Yuan, M. S., and Coauthors, 2021: Global response of terrestrial gross primary productivity to climate extremes. Science of the Total Environment, 750, 142337, https://doi.org/10.1016/j.scitotenv.2020.142337.
Zhang, Y. L., and Coauthors, 2014: Spatial and temporal variability in the net primary production of alpine grassland on the Tibetan Plateau since 1982. Journal of Geographical Sciences, 24(2), 269−287, https://doi.org/10.1007/s11442-014-1087-1.
Zhao, M. S., and S. W. Running, 2010: Drought-induced reduction in global terrestrial net primary production from 2000 through 2009. Science, 329(5994), 940−943, https://doi.org/10.1126/science.1192666.