Adler, R., and Coauthors, 2003: The version-2 global precipitation climatology Project (GPCP) Monthly precipitation analysis (1979−Present). Journal of Hydrometeorology, 4, 1147−1167, https://doi.org/10.1175/1525-7541(2003)004<1147:TVGPCP>2.0.CO;2.
Bao, Q., and Coauthors, 2013: The flexible global ocean-atmosphere-land system model, spectral version 2: FGOALS-s2. Adv. Atmos. Sci., 30, 561−576, https://doi.org/10.1007/s00376-012-2113-9.
Bao, Q., G. X. Wu, Y. M. Liu, J. Yang, Z. H. Wang, and T. J. Zhou, 2010: An introduction to the coupled model FGOALS1.1-s and its performance in East Asia. Adv. Atmos. Sci., 27, 1131−1142, https://doi.org/10.1007/s00376-010-9177-1.
Canuto, V. M., A. Howard, Y. Cheng, and M. S. Dubovikov, 2001: Ocean Turbulence. Part I: One-point closure model—Momentum and heat vertical diffusivities. J. Physi. Oceanogr., 31, 1413−1426, https://doi.org/10.1175/1520-0485(2001)031<1413:OTPIOP>2.0.CO;2.
Canuto, V. M., A. Howard, Y. Cheng, and M. S. Dubovikov, 2002: Ocean turbulence. Part II: Vertical diffusivities of momentum, heat, salt, mass, and passive scalars. J. Phys. Oceanogr., 32, 240−264, https://doi.org/10.1175/1520-0485(2002)032<0240:OTPIVD>2.0.CO;2.
Chen, X. L., Y. M. Liu, and G. X. Wu, 2017: Understanding the surface temperature cold bias in CMIP5 AGCMs over the Tibetan Plateau. Adv. Atmos. Sci., 34, 1447−1460, https://doi.org/10.1007/s00376-017-6326-9.
Cheng, L. J., K. E. Trenberth, J. Fasullo, T. Boyer, J. Abraham, and J. Zhu, 2017: Improved estimates of ocean heat content from 1960 to 2015. Science Advances, 3, e1601545, https://doi.org/10.1126/sciadv.1601545.
Craig, A. P., M. Vertenstein, and R. Jacob, 2011: A new flexible coupler for earth system modeling developed for CCSM4 and CESM1. The International Journal of High Performance Computing Applications, 26, 31−42, https://doi.org/10.1177/1094342011428141.
Donner, L. J., and Coauthors, 2011: The dynamical core, physical parameterizations, and basic simulation characteristics of the atmospheric component AM3 of the GFDL global coupled model CM3. J. Climate, 24, 3484−3519, https://doi.org/10.1175/2011JCLI3955.1.
Eyring, V., S. Bony, G. A. Meehl, C. A. Senior, B. Stevens, R. J. Stouffer, and K. E. Taylor, 2016: Overview of the Coupled Model Intercomparison Project Phase 6(CMIP6) experimental design and organization. Geoscientific Model Development, 9, 1937−1958, https://doi.org/10.5194/gmd-9-1937-2016.
Ferreira, D., J. Marshall, and P. Heimbach, 2005: Estimating eddy stresses by fitting dynamics to observations using a residual-mean ocean circulation model and its Adjoint. J. Phys. Oceanogr., 35, 1891−1910, https://doi.org/10.1175/JPO2785.1.
Gent, P. R., and J. C. Mcwilliams, 1990: Isopycnal mixing in ocean circulation models. J. Phys. Oceanogr., 20, 150−155, https://doi.org/10.1175/1520-0485(1990)020<0150:IMIOCM>2.0.CO;2.
He, B., and Coauthors, 2019: CAS FGOALS-f3-L model datasets for CMIP6 historical atmospheric model Intercomparison project simulation. Adv. Atmos. Sci., 36, 771−778, https://doi.org/10.1007/s00376-019-9027-8.
Hunke, E. C., and W. H. Lipscomb, 2010: CICE: The los alamos sea ice model documentation and software user's manual, version 4.1. LA-CC-06-012.
Kobayashi, C., and T. Iwasaki, 2016: Brewer-dobson circulation diagnosed from JRA-55. J. Geophys. Res., 121, 1493−1510, https://doi.org/10.1002/2015JD023476.
Landerer, F. W., J. H. Jungclaus, and J. Marotzke, 2007: Regional dynamic and steric sea level change in response to the IPCC-A1B scenario. J. Physi. Oceanogr., 37, 296−312, https://doi.org/10.1175/JPO3013.1.
Laurent, L. C. S., H. L. Simmons, and S. R. Jayne, 2002: Estimating tidally driven mixing in the deep ocean. Geophys. Res. Lett., 29, 2106, https://doi.org/10.1029/2002GL015633.
Lawrence, D. M., and Coauthors, 2011: Parameterization improvements and functional and structural advances in version 4 of the community land model. Journal of Advances in Modeling Earth Systems, 3, M03001, https://doi.org/10.1029/2011MS00045.
Lenssen, N. J. L., G. A. Schmidt, J. E. Hansen, M. J. Menne, A. Persin, R. Ruedy, and D. Zyss, 2019: Improvements in the GISTEMP uncertainty model. J. Geophys. Res., 124, 6307−6326, https://doi.org/10.1029/2018JD029522.
Li, J. X., Q. Bao, Y. M. Liu, G. X. Wu, L. Wang, B. He, X. C. Wang, and J. D. Li, 2019: Evaluation of FAMIL2 in simulating the climatology and seasonal-to-Interannual variability of tropical cyclone characteristics. Journal of Advances in Modeling Earth Systems, 11, 1117−1136, https://doi.org/10.1029/2018MS001506.
Li, L. J., and Coauthors, 2013: Evaluation of grid-point atmospheric model of IAP LASG version 2(GAMIL2). Adv. Atmos. Sci., 30, 855−867, https://doi.org/10.1007/s00376-013-2157-5.
Li, L. J., and Coauthors, 2014: The flexible global ocean–atmosphere–land system model, grid-point version 2: FGOALS-g2. Flexible Global Ocean-Atmosphere-Land System Model: A Modeling Tool for the Climate Change Research Community, T. J. Zhou, Y. Q. Yu, Y. M. Liu, and B. Wang, Eds., Springer, 39−43.
Li, X. L., Y. Q. Yu, H. L. Liu, and P. F. Lin, 2017: Sensitivity of Atlantic meridional overturning circulation to the dynamical framework in an ocean general circulation model. Journal of Meteorological Research, 31, 490−501, https://doi.org/10.1007/s13351-017-6109-3.
Lin, S.-J., 2004: A “Vertically Lagrangian” finite-volume dynamical core for global models. Mon. Wea. Rev., 132, 2293−2307, https://doi.org/10.1175/1520-0493(2004)132<2293:AVLFDC>2.0.CO;2.
Liu, H. L., P. F. Lin, Y. Q. Yu, and X. H. Zhang, 2012: The baseline evaluation of LASG/IAP Climate System Ocean Model (LICOM) version 2. Acta Meteorologica Sinica, 26, 318−329, https://doi.org/10.1007/s13351-012-0305-y.
Matthes, K., and Coauthors, 2017: Solar forcing for CMIP6(v3.2). Geoscientific Model Development, 10, 2247−2302, https://doi.org/10.5194/gmd-10-2247-2017.
Meinshausen, M., and Coauthors, 2017: Historical greenhouse gas concentrations for climate modelling (CMIP6). Geoscientific Model Development, 10, 2057−2116, https://doi.org/10.5194/gmd-10-2057-2017.
Morice, C. P., J. J. Kennedy, N. A. Rayner, and P. D. Jones, 2012: Quantifying uncertainties in global and regional temperature change using an ensemble of observational estimates: The HadCRUT4 data set. J. Geophys. Res., 117, D08101, https://doi.org/10.1029/2011JD017187.
Putman, W. M., and S.-J. Lin, 2007: Finite-volume transport on various cubed-sphere grids. J. Comput. Phys., 227, 55−78, https://doi.org/10.1016/j.jcp.2007.07.022.
Stott, P. A., J. F. B. Mitchell, M. R. Allen, T. L. Delworth, J. M. Gregory, G. A. Meehl, and B. D. Santer, 2006: Observational constraints on past attributable warming and predictions of future global warming. J. Climate, 19, 3055−3069, https://doi.org/10.1175/JCLI3802.1.
Taylor, K. E., R. J. Stouffer, and G. A. Meehl, 2012: An overview of CMIP5 and the experiment design. Bull. Amer. Meteorol. Soc., 93, 485−498, https://doi.org/10.1175/BAMS-D-11-00094.1.
Yu, Y. Q., R. C. Yu, X. H. Zhang, and H. L. Liu, 2002: A flexible coupled ocean-atmosphere general circulation model. Adv. Atmos. Sci., 19, 169−190, https://doi.org/10.1007/s00376-002-0042-8.
Yu, Y. Q., W. P. Zheng, B. Wang, H. L. Liu, and J. P. Liu, 2011: Versions g1.0 and g1.1 of the LASG/IAP Flexible global ocean-atmosphere-land System model. Adv. Atmos. Sci., 28, 99−117, https://doi.org/10.1007/s00376-010-9112-5.
Yu, Y. Q., X. H. Zhang, and Y. F. Guo, 2004: Global coupled ocean-atmosphere general circulation models in LASG/IAP. Adv. Atmos. Sci., 21, 444, https://doi.org/10.1007/BF02915571.
Zhou, L. J., and Coauthors, 2015: Global energy and water balance: Characteristics from Finite-volume Atmospheric Model of the IAP/LASG (FAMIL1). Journal of Advances in Modeling Earth Systems, 7, 1−20, https://doi.org/10.1002/2014MS000349.