NOAA., 1976: U.S. Standard Atmosphere, 1976. United States Committee on Extension to the Standard Atmosphere, 227 pp.
Bao, Z. E., and Coauthors, 2021: Effects of NH3 on secondary aerosol formation from toluene/NOx photo-oxidation in different O3 formation regimes. Atmos. Environ., 261, 118603, https://doi.org/10.1016/j.atmosenv.2021.118603.
Behera, S. N., M. Sharma, V. P. Aneja, and R. Balasubramanian, 2013: Ammonia in the atmosphere: A review on emission sources, atmospheric chemistry and deposition on terrestrial bodies. Environmental Science and Pollution Research, 20, 8092−8131, https://doi.org/10.1007/s11356-013-2051-9.
Bouwman, A. F., D. S. Lee, W. A. H. Asman, F. J. Dentener, K. W. Van Der Hoek, and J. G. J. Olivier, 1997: A global high-resolution emission inventory for ammonia. Global Biogeochemical Cycles, 11, 561−587, https://doi.org/10.1029/97GB02266.
Clarisse, L., C. Clerbaux, F. Dentener, D. Hurtmans, and P.-F. Coheur, 2009: Global ammonia distribution derived from infrared satellite observations. Nature Geoscience, 2, 479−483, https://doi.org/10.1038/ngeo551.
Clarisse, L., and Coauthors, 2010: Satellite monitoring of ammonia: A case study of the San Joaquin Valley. J. Geophys. Res. Atmos., 115, D13302, https://doi.org/10.1029/2009JD 013291.
Crippa, M., and Coauthors, 2020: High resolution temporal profiles in the emissions database for global atmospheric research. Scientific Data, 7, 121, https://doi.org/10.1038/s41597-020-0462-2.
Dammers, E., and Coauthors, 2016: An evaluation of IASI-NH3 with ground-based Fourier transform infrared spectroscopy measurements. Atmospheric Chemistry and Physics, 16 , 10 351−10 368, https://doi.org/10.5194/acp-16-10351-2016.
Dammers, E., and Coauthors, 2017: Validation of the CrIS fast physical NH3 retrieval with ground-based FTIR. Atmospheric Measurement Techniques, 10, 2645−2667, https://doi.org/10.5194/amt-10-2645-2017.
De Wachter, E., N. Kumps, A. C. Vandaele, B. Langerock, and M. De Mazière, 2017: Retrieval and validation of MetOp/IASI methane. Atmospheric Measurement Techniques, 10, 4623−4638, https://doi.org/10.5194/amt-10-4623-2017.
Gordon, I. E., and Coauthors, 2022: The HITRAN2020 molecular spectroscopic database. Journal of Quantitative Spectroscopy and Radiative Transfer, 277, 107949, https://doi.org/10.1016/j.jqsrt.2021.107949.
Guo, Y. X., and Coauthors, 2020: Air quality, nitrogen use efficiency and food security in China are improved by cost-effective agricultural nitrogen management. Nature Food, 1, 648−658, https://doi.org/10.1038/s43016-020-00162-z.
Hao, L. Q., E. Kari, A. Leskinen, D. R. Worsnop, and A. Virtanen, 2020: Direct contribution of ammonia to α-pinene secondary organic aerosol formation. Atmospheric Chemistry and Physics, 20 , 14 393−14 405, https://doi.org/10.5194/acp-20-14393-2020.
Hersbach, H., and Coauthors, 2020: The ERA5 global reanalysis. Quart. J. Roy. Meteor. Soc., 146, 1999−2049, https://doi.org/ 10.1002/qj.3803.
Hilton, F., and Coauthors, 2012: Hyperspectral earth observation from IASI: Five years of accomplishments. Bull. Amer. Meteor. Soc., 93, 347−370, https://doi.org/10.1175/BAMS-D-11-00027.1.
Inness, A., and Coauthors, 2019: The CAMS reanalysis of atmospheric composition. Atmospheric Chemistry and Physics, 19, 3515−3556, https://doi.org/10.5194/acp-19-3515-2019.
Kaiser, J. W., and Coauthors, 2012: Biomass burning emissions estimated with a global fire assimilation system based on observed fire radiative power. Biogeosciences, 9, 527−554, https://doi.org/10.5194/bg-9-527-2012.
Li, S. Q., H. Hu, C. G. G. Fang, S. C. Wang, S. P. Xun, B. F. He, W. Y. Wu, and Y. F. Huo, 2022: Hyperspectral infrared atmospheric sounder (HIRAS) atmospheric sounding system. Remote Sensing, 14, 3882, https://doi.org/10.3390/rs1416 3882.
Luo, Z. Q., Y. Z. Zhang, W. Chen, M. Van Damme, P.-F. Coheur, and L. Clarisse, 2022: Estimating global ammonia (NH3) emissions based on IASI observations from 2008 to 2018. Atmospheric Chemistry and Physics, 22 , 10 375−10 388, https://doi.org/10.5194/acp-22-10375-2022.
Mahowald, N. M., R. Scanza, J. Brahney, C. L. Goodale, P. G. Hess, J. K. Moore, and J. Neff, 2017: Aerosol deposition impacts on land and ocean carbon cycles. Current Climate Change Reports, 3, 16−31, https://doi.org/10.1007/s40641-017-0056-z.
Mishchenko, M. I., and L. D. Travis, 1998: Capabilities and limitations of a current FORTRAN implementation of the T-matrix method for randomly oriented, rotationally symmetric scatterers. Journal of Quantitative Spectroscopy and Radiative Transfer, 60, 309−324, https://doi.org/10.1016/S0022-4073(98)00008-9.
Na, K., C. Song, C. Switzer, and D. R. Cocker, 2007: Effect of ammonia on secondary organic aerosol formation from α-pinene ozonolysis in dry and humid conditions. Environ. Sci. Technol., 41, 6096−6102, https://doi.org/10.1021/es061956y.
Qi, C. L., and Coauthors, 2020: High spectral infrared atmospheric sounder (HIRAS): System overview and on-orbit performance assessment. IEEE Trans. Geosci. Remote Sens., 58, 4335−4352, https://doi.org/10.1109/TGRS.2019.2963085.
Rodgers, C. D., 2000: Inverse Methods for Atmospheric Sounding: Theory and Practice. World Scientific, 256 pp. https://doi.org/10.1142/3171.
Shephard, M. W., and K. E. Cady-Pereira, 2015: Cross-track infrared sounder (CrIS) satellite observations of tropospheric ammonia. Atmospheric Measurement Techniques, 8, 1323−1336, https://doi.org/10.5194/amt-8-1323-2015.
Siddans, R., D. Knappett, B. Kerridge, A. Waterfall, J. Hurley, B. Latter, H. Boesch, and R. Parker, 2017: Global height-resolved methane retrievals from the infrared atmospheric sounding interferometer (IASI) on MetOp. Atmospheric Measurement Techniques, 10, 4135−4164, https://doi.org/10.5194/amt-10-4135-2017.
Sindelarova, K., and Coauthors, 2014: Global data set of biogenic VOC emissions calculated by the MEGAN model over the last 30 years. Atmospheric Chemistry and Physics, 14, 9317−9341, https://doi.org/10.5194/acp-14-9317-2014.
Someya, Y., R. Imasu, K. Shiomi, and N. Saitoh, 2020: Atmospheric ammonia retrieval from the TANSO-FTS/GOSAT thermal infrared sounder. Atmospheric Measurement Techniques, 13, 309−321, https://doi.org/10.5194/amt-13-309-2020.
Spurr, R., 2008: LIDORT and VLIDORT: Linearized pseudo-spherical scalar and vector discrete ordinate radiative transfer models for use in remote sensing retrieval problems. Light Scattering Reviews 3: Light Scattering and Reflection, A. A. Kokhanovsky, Ed., Springer, 229−275. https://doi.org/10.1007/978-3-540-48546-9_7.
Stein, O., M. G. Schultz, I. Bouarar, H. Clark, V. Huijnen, A. Gaudel, M. George, and C. Clerbaux, 2014: On the wintertime low bias of Northern Hemisphere carbon monoxide found in global model simulations. Atmospheric Chemistry and Physics, 14, 9295−9316, https://doi.org/10.5194/acp-14-9295-2014.
Twigg, M. M., and Coauthors, 2022: Intercomparison of in situ measurements of ambient NH3: Instrument performance and application under field conditions. Atmospheric Measurement Techniques, 15, 6755−6787, https://doi.org/10.5194/amt-15-6755-2022.
Van Damme, M., J. W. Erisman, L. Clarisse, E. Dammers, S. Whitburn, C. Clerbaux, A. J. Dolman, and P.-F. Coheur, 2015: Worldwide spatiotemporal atmospheric ammonia (NH3) columns variability revealed by satellite. Geophys. Res. Lett., 42, 8660−8668, https://doi.org/10.1002/2015GL0 65496.
Van Damme, M., L. Clarisse, S. Whitburn, J. Hadji-Lazaro, D. Hurtmans, C. Clerbaux, and P.-F. Coheur, 2018: Industrial and agricultural ammonia point sources exposed. Nature, 564, 99−103, https://doi.org/10.1038/s41586-018-0747-1.
Vandaele, A. C., M. Kruglanski, and M. De Mazière, 2006: Modeling and retrieval of atmospheric spectra using ASIMUT. Proc. of the First “Atmospheric Science Conference”, Vol. ESA SP-628, July 2006, Frascati, Italy.
Vandenbussche, S., S. Kochenova, A. C. Vandaele, N. Kumps, and M. De Mazière, 2013: Retrieval of desert dust aerosol vertical profiles from IASI measurements in the TIR atmospheric window. Atmospheric Measurement Techniques, 6, 2577−2591, https://doi.org/10.5194/amt-6-2577-2013.
Waliser, D. E., and C. Gautier, 1993: A satellite-derived climatology of the ITCZ. J. Climate, 6, 2162−2174, https://doi.org/10.1175/1520-0442(1993)006<2162:ASDCOT>2.0.CO;2.
Wang, R., and Coauthors, 2021: Monthly patterns of ammonia over the contiguous United States at 2‐km resolution. Geophys. Res. Lett., 48, e2020GL090579, https://doi.org/10.1029/2020GL090579.
Whitburn, S., L. Clarisse, M. Crapeau, T. August, T. Hultberg, P. F. Coheur, and C. Clerbaux, 2022: A CO2-independent cloud mask from Infrared atmospheric sounding interferometer (IASI) radiances for climate applications. Atmospheric Measurement Techniques, 15, 6653−6668, https://doi.org/10.5194/amt-15-6653-2022.
Wu, C. Q., and Coauthors, 2020: FY-3D HIRAS radiometric calibration and accuracy assessment. IEEE Trans. Geosci. Remote Sens., 58, 3965−3976, https://doi.org/10.1109/TGRS.2019.2959830.
Xian, D., P. Zhang, L. Gao, R. J. Sun, H. Z. Zhang, and X. Jia, 2021: Fengyun meteorological satellite products for earth system science applications. Adv. Atmos. Sci., 38, 1267−1284, https://doi.org/10.1007/s00376-021-0425-3.
Xu, L., and J. E. Penner, 2012: Global simulations of nitrate and ammonium aerosols and their radiative effects. Atmospheric Chemistry and Physics, 12, 9479−9504, https://doi.org/10.5194/acp-12-9479-2012.
Yang, Z. D., and Coauthors, 2019: Capability of Fengyun-3D satellite in earth system observation. J. Meteor. Res., 33, 1113−1130, https://doi.org/10.1007/s13351-019-9063-4.
Zhang, C. M., M. J. Gu, Y. Hu, P. Y. Huang, T. H. Yang, S. Huang, C. L. Yang, and C. Y. Shao, 2021: A study on the retrieval of temperature and humidity profiles based on FY-3D/HIRAS infrared hyperspectral data. Remote Sensing, 13, 2157, https://doi.org/10.3390/rs13112157.
Zhou, D. K., A. M. Larar, X. Liu, W. L. Smith, L. L. Strow, P. Yang, P. Schlüssel, and X. Calbet, 2011: Global land surface emissivity retrieved from satellite ultraspectral IR measurements. IEEE Trans. Geosci. Remote Sens., 49, 1277−1290, https://doi.org/10.1109/TGRS.2010.2051036.
Zhu, L. Y., D. K. Henze, J. O. Bash, K. E. Cady-Pereira, M. W. Shephard, M. Luo, and S. L. Capps, 2015: Sources and impacts of atmospheric NH3: Current understanding and frontiers for modeling, measurements, and remote sensing in North America. Current Pollution Reports, 1, 95−116, https://doi.org/10.1007/s40726-015-0010-4.