Branstator, G., 2002: Circumglobal teleconnections, the jet stream waveguide, and the North Atlantic oscillation. J. Climate, 15, 1893−1910, https://doi.org/10.1175/1520-0442(2002)015<1893:CTTJSW>2.0.CO;2.
Bretherton, C. S., M. Widmann, V. P. Dymnikov, J. M. Wallace, and I. Bladé, 1999: The effective number of spatial degrees of freedom of a time-varying field. J. Climate, 12, 1990−2009, https://doi.org/10.1175/1520-0442(1999)012<1990:TENOSD>2.0.CO;2.
Cao, J., J. M. Hu, and Y. Tao, 2012: An index for the interface between the Indian summer monsoon and the East Asian summer monsoon. J. Geophys. Res.: Atmos., 117, D18108, https://doi.org/10.1029/2012JD017841.
Cao, J., S. Gui, Q. Su, and Y. L. Yang, 2016: The variability of the Indian-East Asian summer monsoon interface in relation to the spring seesaw mode between the Indian Ocean and the central-western Pacific. J. Climate, 29, 5027−5040, https://doi.org/10.1175/JCLI-D-15-0839.1.
Chang, C. P., Z. Wang, J. McBride, and C. H. Liu, 2005: Annual cycle of Southeast Asia-Maritime continent rainfall and the asymmetric monsoon transition. J. Climate, 18, 287−301, https://doi.org/10.1175/JCLI-3257.1.
Chen, G. S., and R. H. Huang, 2012: Excitation mechanisms of the teleconnection patterns affecting the July precipitation in northwest China. J. Climate, 25, 7834−7851, https://doi.org/10.1175/JCLI-D-11-00684.1.
Chow, K. C., Y. M. Liu, J. C. L. Chan, and Y. H. Ding, 2006: Effects of surface heating over Indochina and India landmasses on the summer monsoon over south China. International Journal of Climatology, 26, 1339−1359, https://doi.org/10.1002/joc.1310.
Enomoto, T., 2004: Interannual variability of the Bonin high associated with the propagation of Rossby waves along the Asian jet. J. Meteor. Soc. Japan, 82, 1019−1034, https://doi.org/10.2151/jmsj.2004.1019.
Flohn, H., 1957: Large-scale aspects of the “summer monsoon” in South and East Asia. J. Meteor. Soc. Japan, 35A, 180−186, https://doi.org/10.2151/jmsj1923.35A.0_180.
Giorgetta, M. A., and Coauthors, 2013: Climate and carbon cycle changes from 1850 to 2100 in MPI-ESM simulations for the coupled model intercomparison project phase 5. Journal of Advances in Modeling Earth Systems, 5, 572−597, https://doi.org/10.1002/jame.20038.
Hersbach, H., and Coauthors, 2019: Global reanalysis: Goodbye ERA-Interim, hello ERA5. ECMWF Newsletter, 159, 17−24, https://doi.org/10.21957/vf291hehd7.
Hoffmann, L., and Coauthors, 2019: From ERA-Interim to ERA5: The considerable impact of ECMWF's next-generation reanalysis on Lagrangian transport simulations. Atmospheric Chemistry and Physics, 19, 3097−3124, https://doi.org/10.5194/acp-19-3097-2019.
Holmes, J. A., E. R. Cook, and B. Yang, 2009: Climate change over the past 2000 years in Western China. Quaternary International, 194, 91−107, https://doi.org/10.1016/j.quaint.2007.10.013.
Hoskins, B. J., and T. Ambrizzi, 1993: Rossby wave propagation on a realistic longitudinally varying flow. J. Atmos. Sci., 50, 1661−1671, https://doi.org/10.1175/1520-0469(1993)050<1661:RWPOAR>2.0.CO;2.
Hsu, H. H., and S. H. Lin, 1992: Global teleconnections in the 250-mb streamfunction field during the northern hemisphere winter. Mon. Wea. Rev., 120, 1169−1190, https://doi.org/10.1175/1520-0493(1992)120<1169:GTITMS>2.0.CO;2.
Huang, G., Y. Liu, and R. H. Huang, 2011: The interannual variability of summer rainfall in the arid and semiarid regions of northern China and its association with the Northern Hemisphere circumglobal teleconnection. Adv. Atmos. Sci., 28, 257−268, https://doi.org/10.1007/s00376-010-9225-x.
Lee, M. H., S. Lee, H. J. Song, and C. H. Ho, 2017: The recent increase in the occurrence of a boreal summer teleconnection and its relationship with temperature extremes. J. Climate, 30, 7493−7504, https://doi.org/10.1175/JCLI-D-16-0094.1.
Li, C. F., and M. Yanai, 1996: The onset and interannual variability of the Asian summer monsoon in relation to land-sea thermal contrast. J. Climate, 9, 358−375, https://doi.org/10.1175/1520-0442(1996)009<0358:TOAIVO>2.0.CO;2.
Li, Y. N., S. Yang, Y. Deng, and B. Zheng, 2020: Signals of spring thermal contrast related to the interannual variations in the onset of the South China Sea summer monsoon. J. Climate, 33, 27−38, https://doi.org/10.1175/JCLI-D-19-0174.1.
Liu, X. F., Q. Li, J. H. He, and P. Wang, 2010: Effects of the thermal contrast between Indo-China Peninsula and South China Sea on SCS monsoon onset. Acta Meteorologica Sinica, 67, 100−107, https://doi.org/10.11676/qxxb2009.011. (in Chinese with English abstract
Mantua, N. J., S. R. Hare, Y. Zhang, J. M. Wallace, and R. C. Francis, 1997: A Pacific interdecadal climate oscillation with impacts on salmon production. Bull. Amer. Meteor. Soc., 78, 1069−1079, https://doi.org/10.1175/1520-0477(1997)078,1069:APICOW.2.0.CO;2.
Meng, L., D. Long, S. M. Quiring, and Y. J. Shen, 2014: Statistical analysis of the relationship between spring soil moisture and summer precipitation in East China. International Journal of Climatology, 34, 1511−1523, https://doi.org/10.1002/joc.3780.
Mo, K., and E. M. Rasmusson, 1993: The 200-mb climatological vorticity budget during 1986-1989 as revealed by NMC analyses. J. Climate, 6, 577−594, https://doi.org/10.1175/1520-0442(1993)006<0577:TMCVBD>2.0.CO;2.
Neelin, J. D., and H. Su, 2005: Moist teleconnection mechanisms for the tropical South American and Atlantic sector. J. Climate, 18, 3928−3950, https://doi.org/10.1175/JCLI3517.1.
Neelin, J. D., I. M. Held, and K. H. Cook, 1987: Evaporation-wind feedback and low-frequency variability in the tropical atmosphere. J. Atmos. Sci., 44, 2341−2348, https://doi.org/10.1175/1520-0469(1987)044<2341:EWFALF>2.0.CO;2.
North, G. R., T. L. Bell, R. F. Cahalan, and F. J. Moeng, 1982: Sampling errors in the estimation of empirical orthogonal functions. Mon. Wea. Rev., 110, 699−706, https://doi.org/10.1175/1520-0493(1982)110<0699:SEITEO>2.0.CO;2.
Qin, J., and J. H. Ju, 1997: Weather and Climate in Low Latitudes Plateau. China Meteorology Press, 210 pp. (in Chinese)
Sardeshmukh, P. D., and B. J. Hoskins, 1985: Vorticity balances in the tropics during the 1982-83 El Niño-Southern oscillation event. Quart. J. Roy. Meteor. Soc., 111, 261−278, https://doi.org/10.1256/smsqj.46801.
Sardeshmukh, P. D., and B. J. Hoskins, 1988: The generation of global rotational flow by steady idealized tropical divergence. J. Atmos. Sci., 45, 1228−1251, https://doi.org/10.1175/1520-0469(1988)045<1228:TGOGRF>2.0.CO;2.
Schlesinger, M. E., and N. Ramankutty, 1994: An oscillation in the global climate system of period 65-70 years. Nature, 367, 723−726, https://doi.org/10.1038/367723a0.
Son, J. H., K. H. Seo, and B. Wang, 2019: Dynamical control of the Tibetan Plateau on the East Asian summer monsoon. Geophys. Res. Lett., 46, 7672−7679, https://doi.org/10.1029/2019GL083104.
Son, J. H., K. H. Seo, and B. Wang, 2020: How does the Tibetan Plateau dynamically affect downstream monsoon precipitation? Geophys. Res. Lett., 47, e2020GL090543, https://doi.org/10.1029/2020GL090543.
Stevens, B., and Coauthors, 2013: Atmospheric component of the MPI-M Earth system model: ECHAM6. Journal of Advances in Modeling Earth Systems, 5, 146−172, https://doi.org/10.1002/jame.20015.
Takaya, K., and H. Nakamura, 1997: A formulation of a wave-activity flux for stationary Rossby waves on a zonally varying basic flow. Geophys. Res. Lett., 24, 2985−2988, https://doi.org/10.1029/97GL03094.
Takaya, K., and H. Nakamura, 2001: A formulation of a phase-independent wave-activity flux for stationary and migratory quasigeostrophic eddies on a zonally varying basic flow. J. Atmos. Sci., 58, 608−627, https://doi.org/10.1175/1520-0469(2001)058<0608:AFOAPI>2.0.CO;2.
Tao, Y., J. Cao, G. D. Lan, and Q. Su, 2016: The zonal movement of the Indian-East Asian summer monsoon interface in relation to the land-sea thermal contrast anomaly over East Asia. Climate Dyn., 46, 2759−2771, https://doi.org/10.1007/s00382-015-2729-4.
Wang, H., B. Wang, F. Huang, Q. G. Ding, and J. Y. Lee, 2012: Interdecadal change of the boreal summer circumglobal teleconnection (1958−2010). Geophys. Res. Lett., 39, L12704, https://doi.org/10.1029/2012GL052371.
Wang, Y. M., B. Wu, and T. J. Zhou, 2022: Maintenance of western north Pacific anomalous anticyclone in boreal summer by wind-induced moist enthalpy advection mechanism. J. Climate, 35, 4499−4511, https://doi.org/10.1175/JCLI-D-21-0708.1.
Watanabe, M., 2004: Asian jet waveguide and a downstream extension of the North Atlantic Oscillation. J. Climate, 17, 4674−4691, https://doi.org/10.1175/JCLI-3228.1.
Wu, B., J. S. Lin, and T. J. Zhou, 2016a: Interdecadal circumglobal teleconnection pattern during boreal summer. Atmos. Sci. Lett., 17, 446−452, https://doi.org/10.1002/asl.677.
Wu, B., T. J. Zhou, and T. M. Li, 2016b: Impacts of the Pacific-Japan and circumglobal teleconnection patterns on the interdecadal variability of the East Asian summer monsoon. J. Climate, 29, 3253−3271, https://doi.org/10.1175/JCLI-D-15-0105.1.
Wu, B., T. J. Zhou, C. Li, W. A. Müller, and J. S. Lin, 2019: Improved decadal prediction of Northern-Hemisphere summer land temperature. Climate Dyn., 53, 1357−1369, https://doi.org/10.1007/s00382-019-04658-8.
Xie, M. E., and Y. Liu, 1998: Climatic features primary study of global low latitude plateau regions. Yunnan Geographic Environment Research, 10, 25−33. (in Chinese with English abstract)
Xie, S. P., H. M. Xu, N. H. Saji, Y. Q. Wang, and W. T. Liu, 2006: Role of narrow mountains in large-scale organization of Asian monsoon convection. J. Climate, 19, 3420−3429, https://doi.org/10.1175/JCLI3777.1.
Xu, H. M., J. H. He, M. Wen, and M. Dong, 2002: A numerical study of effects of the Indo-China Peninsula on the establishment and maintenance of the South China Sea summer monsoon. Chinese Journal of Atmospheric Sciences, 26, 330−342, https://doi.org/10.3878/j.issn.1006-9895.2002.03.04. (in Chinese with English abstract
Yanai, M., and C. F. Li, 1994: Mechanism of heating and the boundary layer over the Tibetan Plateau. Mon. Wea. Rev., 122, 305−323, https://doi.org/10.1175/1520-0493(1994)122<0305:MOHATB>2.0.CO;2.
Yanai, M., C. F. Li, and Z. S. Song, 1992: Seasonal heating of the Tibetan Plateau and its effects on the evolution of the Asian summer monsoon. J. Meteor. Soc. Japan, 70, 319−351, https://doi.org/10.2151/jmsj1965.70.1B_319.
Yang, J. Q., H. S. Chen, Y. D. Song, S. G. Zhu, B. T. Zhou, and J. Zhang, 2021: Atmospheric circumglobal teleconnection triggered by spring land thermal anomalies over West Asia and its possible impacts on early summer climate over northern China. J. Climate, 34, 5999−6021, https://doi.org/10.1175/JCLI-D-20-0911.1.
Yasui, S., and M. Watanabe, 2010: Forcing processes of the summertime circumglobal teleconnection pattern in a dry AGCM. J. Climate, 23, 2093−2114, https://doi.org/10.1175/2009JCLI3323.1.
Yeh, T. C., S. W. Lo, and P. C. Chu, 1957: The wind structure and heat balance in the lower troposphere over Tibetan Plateau and its surrounding. Acta Meteorologica Sinica, 28, 108−121. (in Chinese with English abstract)
Yuan, J. C., W. H. Li, and Y. Deng, 2015: Amplified subtropical stationary waves in boreal summer and their implications for regional water extremes. Environmental Research Letters, 10, 104009, https://doi.org/10.1088/1748-9326/10/10/104009.
Zhu, Z. W., and T. M. Li, 2017: Empirical prediction of the onset dates of South China Sea summer monsoon. Climate Dyn., 48, 1633−1645, https://doi.org/10.1007/s00382-016-3164-x.
Zhuang, M. R., A. M. Duan, R. Y. Lu, P. X. Li, and J. L. Yao, 2022: Relative impacts of the orography and land–sea contrast over the Indochina peninsula on the Asian Summer Monsoon between early and late summer. J. Climate, 35, 3037−3055, https://doi.org/10.1175/JCLI-D-21-0576.1.