Andrews, T., P. M. Forster, and J. M. Gregory, 2009: A surface energy perspective on climate change. J. Climate, 22, 2557−2570, https://doi.org/10.1175/2008JCLI2759.1.
Bala, G., K. Caldeira, and R. Nemani, 2010: Fast versus slow response in climate change: Implications for the global hydrological cycle. Climate Dyn., 35, 423−434, https://doi.org/10.1007/s00382-009-0583-y.
Banks, H. T., and J. M. Gregory, 2006: Mechanisms of ocean heat uptake in a coupled climate model and the implications for tracer based predictions of ocean heat uptake. Geophys. Res. Lett., 33, L07608, https://doi.org/10.1029/2005GL025352.
Bao, Q., and Coauthors, 2013: The flexible global ocean-atmosphere-land system model, spectral version 2: FGOALS-s2. Adv. Atmos. Sci., 30, 561−576, https://doi.org/10.1007/s00376-012-2113-9.
Bao, Q., X. F. Wu, J. X. Li, L. Wang, B. He, X. C. Wang, Y. M. Liu, and G. X. Wu, 2019: Outlook for El Niño and the Indian Ocean Dipole in autumn−winter 2018-2019. Chinese Science Bulletin, 64, 73−78, https://doi.org/10.1360/N972018-00913. (in Chinese)
Cazenave, A., and F. Remy, 2011: Sea level and climate: Measurements and causes of changes. WIREs Climate Change, 2, 647−662, https://doi.org/10.1002/wcc.139.
Collins, M., and Coauthors, 2013: Long-term climate change: Projections, commitments and irreversibility. Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change, T. F. Stocker et al., Eds., Cambridge University Press. 1029−1136.
Craig, T., 2014: CPL7 User’s Guide. [Available online from www.cesm.ucar.edu/models/cesm1.2/cpl7/doc/book1.html]
Drijfhout, S., G. J. van Oldenborgh, and A. Cimatoribus, 2012: Is a decline of AMOC causing the warming hole above the North Atlantic in observed and modeled warming patterns? J. Climate, 25(24), 8373−8379, https://doi.org/10.1175/JCLI-D-12-00490.1.
Eyring, V., S. Bony, G. A. Meeh, C. A. Senior, B. Stevens, R. J. Stouffer, and K. E. Taylor, 2016: Overview of the Coupled Model Intercomparison Project Phase 6 (CMIP6) experimental design and organization. Geoscientific Model Development, 9(5), 1937−1958, https://doi.org/10.5194/gmd-9-1937-2016.
Guo, Y. F., Y. Q. Yu, K. M. Chen, X. Z. Jin, and X. H. Zhang, 1996: Mean climate state simulated by a coupled ocean-atmosphere general circulation model. Theor. Appl. Climatol., 55, 99−111, https://doi.org/10.1007/BF00864705.
Hansen, J., and Coauthors, 2007: Dangerous human-made interference with climate: A GISS modelE study. Atmospheric Chemistry and Physics, 7, 2287−2312, https://doi.org/10.5194/acp-7-2287-2007.
He, B., and Coauthors, 2020: CAS FGOALS-f3-L model dataset descriptions for CMIP6 DECK experiments. Atmos. Ocean. Sci. Lett., https://doi.org/10.1080/16742834.2020.1778419.
Held, I. M., and B. J. Soden, 2006: Robust responses of the hydrological cycle to global warming. J. Climate, 19, 5686−5699, https://doi.org/10.1175/JCLI3990.1.
Hunke, E. C., and W. H. Lipscomb, 2010: CICE: The Los Alamos Sea ice model documentation and software user’s manual version 4.1. Tech. Rep. LA-CC-06-012, 675 pp.
Knutti, R., J. Flückiger, T. F. Stocker, and A. Timmermann, 2004: Strong hemispheric coupling of glacial climate through freshwater discharge and ocean circulation. Nature, 430, 851−856, https://doi.org/10.1038/nature02786.
Landerer, F. W., J. H. Jungclaus, and J. Marotzke, 2007: Regional dynamic and steric sea level change in response to the IPCC-A1B scenario. J. Phys. Oceanogr., 37, 296−312, https://doi.org/10.1175/JPO3013.1.
Li, J. X., Q. Bao, Y. M. Liu, G. X. Wu, L. Wang, B. He, X. C. Wang, and J. D. Li, 2019: Evaluation of FAMIL2 in simulating the climatology and seasonal-to-interannual variability of tropical cyclone characteristics. Journal of Advances in Modeling Earth Systems, 11, 1117−1136, https://doi.org/10.1029/2018MS001506.
Lin, P. F., and Coauthors, 2020: LICOM model datasets for the CMIP6 ocean model intercomparison project. Adv. Atmos. Sci., 37, 239−249, https://doi.org/10.1007/s00376-019-9208-5.
Matthes, K., and Coauthors, 2017: Solar forcing for CMIP6 (v3.2). Geoscientific Model Development, 10, 2247−2302, https://doi.org/10.5194/gmd-10-2247-2017.
Mauritsen, T., and R. Pincus, 2017: Committed warming inferred from observations. Nature Climate Change, 7, 652−655, https://doi.org/10.1038/nclimate3357.
Nazarenko, L., and Coauthors, 2015: Future climate change under RCP emission scenarios with GISS ModelE2. Journal of Advances in Modeling Earth Systems, 7, 244−267, https://doi.org/10.1002/2014MS000403.
O’Neill, B. C., and Coauthors, 2016: The Scenario Model Intercomparison Project (ScenarioMIP) for CMIP6. Geoscientific Model Development, 9(9), 3461−3482, https://doi.org/10.5194/gmd-9-3461-2016.
Oleson, K. W., and Coauthors, 2010: Technical description of version 4.0 of the community land model (CLM). NCAR/TN-478+STR, 173 pp.
Riahi, K., and Coauthors, 2017: The Shared Socioeconomic Pathways and their energy, land use, and greenhouse gas emissions implications: An overview. Global Environmental Change, 42, 153−168, https://doi.org/10.1016/j.gloenvcha.2016.05.009.
Seager, R., N. Naik, and G. A. Vecchi, 2010: Thermodynamic and dynamic mechanisms for large-scale changes in the hydrological cycle in response to global warming. J. Climate, 23, 4651−4668, https://doi.org/10.1175/2010JCLI3655.1.
Stevens, B., and Coauthors, 2013: Atmospheric component of the MPI-M Earth system model: ECHAM6. Journal of Advances in Modeling Earth Systems, 5, 146−172, https://doi.org/10.1002/jame.20015.
Stroeve, J. C., V. Kattsov, A. Barrett, M. Serreze, T. Pavlova, M. Holland, and W. N. Meier, 2012: Trends in Arctic sea ice extent from CMIP5, CMIP3 and observations. Geophys. Res. Lett., 39, L16502, https://doi.org/10.1029/2012GL052676.
Taylor, K. E., R. J. Stouffer, and G. A. Meehl, 2012: An overview of CMIP5 and the experiment design. Bull. Amer. Meteor. Soc., 93, 485−498, https://doi.org/10.1175/BAMS-D-11-00094.1.
Timmermann, A., and Coauthors, 2007: The influence of a weakening of the Atlantic meridional overturning circulation on ENSO. J. Climate, 20, 4899−4919, https://doi.org/10.1175/JCLI4283.1.
Yu, Y. Q., R. C. Yu, X. H. Zhang, and H. L. Liu, 2002: A flexible global coupled ocean-atmospheric general circulation model. Adv. Atmos. Sci., 19, 169−190, https://doi.org/10.1007/s00376-002-0042-8.
Yu, Y.Q., X.H Zhang. and Y.F Guo, 2004: Global coupled ocean-atmosphere general circulation models in LASG/IAP. Adv. Atmos. Sci., 21, 444−455, https://doi.org/10.1007/BF02915571.
Zhang, L. X., X. L. Chen, and X. G. Xin, 2019: Short commentary on CMIP6 Scenario Model Intercomparison Project (ScenarioMIP). Climate Change Research, 15, 519−525, https://doi.org/10.12006/j.issn.1673-1719.2019.082. (in Chinese)
Zhou, L. J., and Coauthors, 2015: Global energy and water balance: Characteristics from finite-volume Atmospheric Model of the IAP/LASG (FAMIL1). Journal of Advances in Modeling Earth Systems, 7, 1−20, https://doi.org/10.1002/2014MS000349.
Zhou, T. J., and F. F. Song, 2014a: Representative Concentration Pathway (RCP) projection of climate change by FGOALS. Flexible Global Ocean-Atmosphere-Land System Model, T. J. Zhou, Y. Q. Yu, Y. Liu, and B. Wang, Eds., Springer, 267−274, https://doi.org/10.1007/978-3-642-41801-3_32.
Zhou, T. J., L. W. Zou, B. Wu, C. X. Jin, F. F. Song, X. L. Chen, and L. X. Zhang, 2014b: Development of earth/climate system models in China: A review from the coupled model intercomparison project perspective. Journal of Meteorological Research, 28, 762−779, https://doi.org/10.1007/s13351-014-4501-9.