An, S.-I., and F.-F. Jin, 2001: Collective role of thermocline and zonal advective feedbacks in the ENSO mode. J. Climate, 14, 3421−3432, https://doi.org/10.1175/1520-0442(2001)014<3421:CROTAZ>2.0.CO;2.
Annamalai, H., S. P. Xie, J. P. McCreary, and R. Murtugudde, 2005: Impact of Indian Ocean sea surface temperature on developing El Niño. J. Climate, 18, 302−319, https://doi.org/10.1175/JCLI-3268.1.
Ashok, K., S. K. Behera, S. A. Rao, H. Weng, and T. Yamagata (2007), El Nin˜o Modoki and its possible teleconnection. J. Geophys. Res., 112, C11007, doi:10.1029/2006JC003798.
Behera, S. K. and T. Yamagata, 2003: Influence of the Indian Ocean dipole on the southern oscillation. J. Meteor. Soc. Japan, 81, 169−177, https://doi.org/10.2151/jmsj.81.169.
Behringer, D., and Y. Xue, 2004: Evaluation of the global ocean data assimilation system at NCEP: The Pacific Ocean. Preprints, Eighth Symp. On Integrated Observing and Assimilation Systems for Atmosphere, Oceans, and Land Surface, Seattle, WA, Amer. Meteor. Soc., 1−6.
Cai, W. J., A. Santoso, G. J. Wang, E. Weller, L. X. Wu, K. Ashok, Y. Masumoto, and T. Yamagata, 2014: Increased frequency of extreme Indian Ocean dipole events due to greenhouse warming. Nature, 510, 254−258, https://doi.org/10.1038/nature13327.
Chen, D. K., and Coauthors, 2015: Strong influence of westerly wind bursts on El Niño diversity. Nature Geoscience, 8, 339−345, https://doi.org/10.1038/ngeo2399.
Chen, M., and T. Li, 2018: Why 1986 El Niño and 2005 La Niña evolved different from a typical El Niño and La Niña. Clim. Dyn., 51, 4309−4327, https://doi.org/10.1007/s00382-017-3852-1.
Copernicus Climate Change Service (C3S), 2017: ERA5: Fifth generation of ECMWF atmospheric reanalyses of the global climate. Copernicus Climate Change Service Climate Data Store (CDS). [Available online from https://cds.climate.copernicus.eu/cdsapp#!/dataset/reanalysis-era5-pressure-levels-monthlymeans?tab=form.]
Ding, Y. H., Y. Y. Liu, and Z.-Z. Hu, 2021: The record-breaking mei-yu in 2020 and associated atmospheric circulation and tropical SST anomalies. Adv. Atmos. Sci., https://doi.org/10.1007/s00376-021-0361-2.
Du, Y., Y. H. Zhang, L.-Y. Zhang, T. Tozuka, B. Ng, and W. J. Cai, 2020: Thermocline warming induced extreme Indian Ocean dipole in 2019. Geophys. Res. Lett., 47, e2020GL090079, https://doi.org/10.1029/2020GL090079.
Feng, L. C., R.-H. Zhang, Z. G. Wang, and X. R. Chen, 2015: Processes leading to second-year cooling of the 2010-12 La Niña event, diagnosed using GODAS. Adv. Atmos. Sci., 32, 424−438, https://doi.org/10.1007/s00376-014-4012-8.
Feng, L. C., R.-H. Zhang, B. Yu, and X. Han, 2020: Roles of wind stress and subsurface cold water in the second-year cooling of the 2017/18 La Niña event. Adv. Atmos. Sci., 37, 847−860, https://doi.org/10.1007/s00376-020-0028-4.
Gao, C. and R.-H. Zhang, 2017: The roles of atmospheric wind and entrained water temperature (Te) in the second-year cooling of the 2010−12 La Niña event. Climate Dyn., 48, 597−617, https://doi.org/10.1007/s00382-016-3097-4.
Gill, A. E., 1980: Some simple solutions for heat-induced tropical circulation. Quart. J. Roy. Meteor. Soc., 106, 447−462, https://doi.org/10.1002/qj.49710644905.
Ham, Y.-G., J.-S. Kug, J.-Y. Park, and F.-F. Jin, 2013a: Sea surface temperature in the north tropical Atlantic as a trigger for El Niño/Southern Oscillation events. Nature Geoscience, 6, 112−116, https://doi.org/10.1038/ngeo1686.
Ham, Y.-G., J.-S. Kug, and J.-Y. Park, 2013b: Two distinct roles of Atlantic SSTs in ENSO variability: North tropical Atlantic SST and Atlantic niño. Geophys. Res. Lett., 40, 4012−4017, https://doi.org/10.1002/grl.50729.
Hu, Z. Z., A. Kumar, Y. Xue, and J. Bhaskar, 2014: Why were some La Niñas followed by another La Niña. Clim. Dyn, 42, 1029−1042, https://doi.org/10.1007/s00382-013-1917-3.
Hu, S. N., and A. V. Fedorov, 2019: The extreme El Niño of 2015–2016: The role of westerly and easterly wind bursts, and preconditioning by the failed 2014 event. Clim. Dyn., 52, 7339−7357, https://doi.org/10.1007/s00382-017-3531-2.
Huang, B. Y., and Coauthors, 2017: Extended reconstructed sea surface temperature, version 5 (ERSSTv5): Upgrades, validations, and intercomparisons. J. Climate, 30, 8179−8205, https://doi.org/10.1175/JCLI-D-16-0836.1.
Izumo, T., and Coauthors, 2010: Influence of the state of the Indian Ocean Dipole on the following year’s El Niño. Nature Geoscience, 3, 168−172, https://doi.org/10.1038/ngeo760.
Jin, F.-F., S.-I. An, A. Timmermann, and J. X. Zhao, 2003: Strong El Niño events and nonlinear dynamical heating. Geophys. Res. Lett., 30, 1120, https://doi.org/10.1029/2002GL016356.
Kim, J.-W., and J.-Y. Yu, 2020: Understanding reintensified multiyear El Niño events. Geophys. Res. Lett., 47, e2020GL087644, https://doi.org/10.1029/2020GL087644.
Kug J. S., F. F. Jin, and S. I. An, 2009: Two types of El Niño events: Cold tongue El Niño and warm pool El Niño. J. Clim, 22, 1499−515, https://doi.org/10.1175/2008JCLI2624.1.
Li, C. Y., 1990: Interaction between anomalous winter monsoon in East Asia and El Nino events. Adv. Atmos. Sci., 7, 36−46, https://doi.org/10.1007/BF02919166.
Li, T., Y. S. Zhang, E. Lu, and D. L. Wang, 2002: Relative role of dynamic and thermodynamic processes in the development of the Indian Ocean dipole: An OGCM diagnosis. Geophys. Res. Lett., 29, 2110, https://doi.org/10.1029/2002GL015789.
Lian, T, D. K. Chen, and Y. M. Tang, 2017: Genesis of the 2014–2016 El Niño events. Science China Earth Sciences, 60, 1589−1600, https://doi.org/10.1007/s11430-016-5315-5.
Liu, Y. Y., and Y. H. Ding, 2020: Characteristics and possible causes for the extreme Meiyu in 2020. Meteorological Monthly, 46, 1393−1404, https://doi.org/10.7519/j.issn.1000-0526.2020.11.001. (in Chinese with English abstract
Marathe, S., K. Ashok, P. Swapna, and T. P. Sabin, 2015: Revisiting El Nino Modokis. Clim. Dyn., 45, 3527−3545, https://doi.org/10.1007/s00382-015-2555-8.
Rasmusson, E. M. and T. H. Carpenter, 1982: Variations in tropical sea surface temperature and surface wind fields associated with the southern oscillation/El Niño. Mon. Wea. Rev., 110, 354−384, https://doi.org/10.1175/1520-0493(1982)110<0354:VITSST>2.0.CO;2.
Ren, H.-L, and F.-F. Jin, 2013: Recharge oscillator mechanisms in two types of ENSO. J. Climate, 26, 6506−6523, https://doi.org/10.1175/JCLI-D-12-00601.1.
Saji, N. H., and T. Yamagata, 2003: Possible impacts of Indian Ocean Dipole mode events on global climate. Climate Research, 25, 151−169, https://doi.org/10.3354/cr025151.
Saji, N. H., B. N. Goswami, P. N. Vinayachandran, and T. Yamagata, 1999: A dipole mode in the tropical Indian Ocean. Nature, 401, 360−363, https://doi.org/10.1038/43854.
Tian, F., R.-H. Zhang, and X. J. Wang, 2021: Indian Ocean warming as a potential trigger for super phytoplankton blooms in the eastern equatorial Pacific from El Niño to La Niña transitions. Environmental Research Letters, 16, 054040, https://doi.org/10.1088/1748-9326/abf76f.
Tokinaga, H., I. Richter, and Y. Kosaka, 2019: ENSO influence on the Atlantic niño, revisited: Multi-year versus single-year ENSO events. J. Climate, 32, 4585−4600, https://doi.org/10.1175/JCLI-D-18-0683.1.
Wang, B., R. G. Wu, and R. Lukas, 2000: Annual Adjustment of the Thermocline in the Tropical Pacific Ocean. J. Climate, 13, 596−616, https://doi.org/10.1175/1520-0442(2000)013<0596:AAOTTI>2.0.CO;2.
Xie, S.-P., K. M. Hu, J. Hafner, H. Tokinaga, Y. Du, G. Huang, and T. Sampe, 2009: Indian Ocean capacitor effect on Indo-western Pacific climate during the summer following El Niño. J. Climate, 22, 730−747, https://doi.org/10.1175/2008JCLI2544.1.
Xue, Y., Kumar A, 2017: Evolution of the 2015/16 El Niño and historical perspective since 197. Sci China Earth Sci, 60, 1572−1588.
Yang, X. K., and P. Huang, 2021: Restored relationship between ENSO and Indian summer monsoon rainfall around 1999/2000. The Innovation, 2, 100102, https://doi.org/10.1016/j.xinn.2021.100102.
Zhang, L., G. Wang, M. Newman, and W. Q. Han, 2021a: Interannual to decadal variability of tropical Indian Ocean Sea surface temperature: Pacific Influence versus local internal variability. J. Climate, 34, 2669−2684, https://doi.org/10.1175/JCLI-D-20-0807.1.
Zhang, L., W. Q. Han, and Z.-Z. Hu, 2021b: Interbasin and multiple-time-scale interactions in generating the 2019 extreme Indian Ocean dipole. J. Climate, 34, 4553−4566, https://doi.org/10.1175/JCLI-D-20-0760.1.
Zhang, R.-H., and C. Gao, 2016: The IOCAS intermediate coupled model (IOCAS ICM) and its real-time predictions of the 2015−2016 El Niño event. Science Bulletin, 61, 1061−1070, https://doi.org/10.1007/s11434-016-1064-4.
Zhang R-H, and C. Gao, 2017: Processes involved in the second-year warming of the 2015 El Niño event as derived from an intermediate ocean model. Sci China Earth Sci, 60, 1601−1613, https://doi.org/10.1007/s11430-016-0201-9.
Zhang, R.-H., S. E. Zebiak, R. Kleeman, and N. Keenlyside, 2003: A new intermediate coupled model for El Nino simulation and prediction. Geophys. Res. Lett., 30, 2012, https://doi.org/10.1029/2003GL018010.
Zhang, R.-H., S. E. Zebiak, R. Kleeman, and N. Keenlyside, 2005: Retrospective El Niño forecasts using an improved intermediate coupled model. Mon. Wea. Rev., 133, 2777−2802, https://doi.org/10.1175/MWR3000.1.
Zhang, R.-H., and Coauthors, 2020: A review of progress in coupled ocean-atmosphere model developments for ENSO studies in China. Journal of Oceanology and Limnology, 38, 930−961, https://doi.org/10.1007/s00343-020-0157-8.
Zhang, R., A. Sumi, and M. Kimoto, 1996: Impact of El Niño on the East Asian monsoon: A diagnostic study of the '86/87 and '91/92 events. J. Meteor. Soc. Japan, 74, 49−62, https://doi.org/10.2151/jmsj1965.74.1_49.
Zheng, J. Y., and C. Z. Wang, 2021: Influences of three oceans on record-breaking rainfall over the Yangtze River Valley in June 2020. Science China Earth Sciences, inpress, https://doi.org/10.1007/s11430-020-9758-9.
Zhou, Z.-Q., S.-P. Xie, and R. H. Zhang, 2021: Historic Yangtze flooding of 2020 tied to extreme Indian Ocean conditions. Proceedings of the National Academy of Sciences of the United States of America, 118, e2022255118, https://doi.org/10.1073/pnas.2022255118.