Antonov, J. I., R. A. Locarnini, T. P. Boyer, A. V. Mishonov, and H. E. Garcia, 2006: Salinity. Vol. 2, World Ocean Atlas 2005. NOAA Atlas Nesdis 62, S. Levitus, Ed., NOAA, Sliver Spring, Md., 182 pp.
Bushuk, M., R. Msadek, M. Winton, G. A. Vecchi, R. Gudgel, A. Rosati, and X. S. Yang, 2017: Skillful regional prediction of Arctic sea ice on seasonal timescales. Geophys. Res. Lett., 44, 4953−4964, https://doi.org/10.1002/2017GL073155.
Carmack, E., I. Polyakov, L. Padman, I. Fer, and P. Winsor, 2015: Toward quantifying the increasing role of oceanic heat in sea ice loss in the new arctic. Bull. Amer. Meteor. Soc., 96, 2079−2105, https://doi.org/10.1175/BAMS-D-13-00177.1.
Cavalieri, D. J., C. L. Parkinson, N. Digirolamo, and A. Ivanoff, 2012: Intersensor calibration between F13 SSMI and F17 SSMIS for global sea ice data records. IEEE Geoscience and Remote Sensing Letters, 9, 233−236, https://doi.org/10.1109/LGRS.2011.2166754.
Cohen, J., and Coauthors, 2014: Recent Arctic amplification and extreme mid-latitude weather. Nature Geoscience, 7, 627−637, https://doi.org/10.1038/ngeo2234.
Comiso, J. C., 2017: Bootstrap sea ice concentrations from nimbus-7 SMMR and DMSP SSM/I-SSMIS, version 3. [Indicate subset used]. Boulder, Colorado USA. NASA National Snow and Ice Data Center Distributed Active Archive Center. [Available online from https://nsidc.org/data/nsidc-0079/versions/3]
Comiso, J. C., W. N. Meier, and R. Gersten, 2017: Variability and trends in the Arctic Sea ice cover: Results from different techniques. J. Geophys. Res., 122, 6883−6900, https://doi.org/10.1002/2017JC012768.
Dee, D. P., and Coauthors, 2011: The ERA-Interim reanalysis: Configuration and performance of the data assimilation system. Quart. J. Roy. Meteor. Soc., 137, 553−597, https://doi.org/10.1002/qj.828.
Eicken, H., 2013: Arctic sea ice needs better forecasts. Nature, 497, 431−433, https://doi.org/10.1038/497431a.
Fetterer, F., K. Knowles, W. N. Meier, M. Savoie, and A. K. Windnagel. 2017: Updated daily. Sea Ice Index, Version 3. [Indicate subset used]. NSIDC, National Snow and Ice Data Center. Boulder, Colorado, USA. [Available online from https://nsidc.org/data/G02135/versions/3]
Fichefet, T., and P. Gaspar, 1988: A model study of upper ocean-sea ice interactions. J. Phys. Oceanogr., 18, 181−195, https://doi.org/10.1175/1520-0485(1988)018<0181:AMSOUO>2.0.CO;2.
Francis, J. A., 2013: The where and when of wetter and drier: Disappearing Arctic sea ice plays a role. Environmental Research Letters, 8, 041002, https://doi.org/10.1088/1748-9326/8/4/041002.
Francis, J. A., and S. J. Vavrus, 2012: Evidence linking Arctic amplification to extreme weather in mid-latitudes. Geophys. Res. Lett., 39, L06801, https://doi.org/10.1029/2012GL051000.
Guemas, V., and Coauthors, 2016: A review on Arctic sea-ice predictability and prediction on seasonal to decadal time-scales. Quart. J. Roy. Meteor. Soc., 142, 546−561, https://doi.org/10.1002/qj.2401.
Hendricks, S., and R. Ricker, 2019: Product user guide & algorithm specification: AWI CryoSat-2 sea ice thickness (version 2.1). [Available online from https://epic.awi.de/id/eprint/49542/]
Holland, M. M., C. M. Bitz, M. Eby, and A. J. Weaver, 2001: The role of ice-ocean interactions in the variability of the North Atlantic Thermohaline Circulation. J. Climate, 14, 656−675, https://doi.org/10.1175/1520-0442(2001)014<0656:TROIOI>2.0.CO;2.
Holland, M. M., M. C. Serreze, and J. Stroeve, 2010: The sea ice mass budget of the Arctic and its future change as simulated by coupled climate models. Climate Dyn., 34, 185−200, https://doi.org/10.1007/s00382-008-0493-4.
Hopsch, S., J. Cohen, and K. Dethloff, 2012: Analysis of a link between fall Arctic sea ice concentration and atmospheric patterns in the following winter. Tellus A: Dynamic Meteorology and Oceanography, 64, 18624, https://doi.org/10.3402/tellusa.v64i0.18624.
Kaleschke, L., C. Lüpkes, T. Vihma, J. Haarpaintner, A. Bochert, J. Hartmann, and G. Heygster, 2001: SSM/I sea ice remote sensing for mesoscale ocean-atmosphere interaction analysis. Canadian Journal of Remote Sensing, 27, 526−537, https://doi.org/10.1080/07038992.2001.10854892.
Kwok, R., and G. F. Cunningham, 2008: ICESat over Arctic sea ice: Estimation of snow depth and ice thickness. J. Geophys. Res., 113, C08010, https://doi.org/10.1029/2008JC004753.
Kwok, R., G. F. Cunningham, M. Wensnahan, I. Rigor, H. J. Zwally, and D. Yi, 2009: Thinning and volume loss of the Arctic Ocean sea ice cover: 2003−2008. J. Geophys. Res., 114, C07005, https://doi.org/10.1029/2009JC005312.
Lisæter, K. A., J. Rosanova, and G. Evensen, 2003: Assimilation of ice concentration in a coupled ice−ocean model, using the Ensemble Kalman filter. Ocean Dyn., 53, 368−388, https://doi.org/10.1007/s10236-003-0049-4.
Liu, J. P., J. A. Curry, H. J. Wang, M. R. Song, and R. M. Horton, 2012: Impact of declining Arctic sea ice on winter snowfall. Proceedings of the National Academy of Sciences of the United States of America, 109, 4074−4079, https://doi.org/10.1073/pnas.1114910109.
Liu, J. P., M. R. Song, R. M. Horton, and Y. Y. Hu, 2013: Reducing spread in climate model projections of a September ice-free Arctic. Proceedings of the National Academy of Sciences of the United States of America, 110, 12 571−12 576, https://doi.org/10.1073/pnas.1219716110.
Locarnini, R. A., A. V. Mishonov, J. I. Antonov, T. P. Boyer, and H. E. Garcia, 2006: Temperature. Vol. 1, World Ocean Atlas 2005. NOAA Atlas Nesdis 61, S. Levitus, Ed., NOAA, Sliver Spring, Md., 182 pp.
Losch, M., D. Menemenlis, J. M. Campin, P. Heimbach, and C. Hill, 2010: On the formulation of sea-ice models. Part 1: Effects of different solver implementations and parameterizations. Ocean Modelling, 33, 129−144, https://doi.org/10.1016/j.ocemod.2009.12.008.
Maykut, G. A., 1982: Large-scale heat exchange and ice production in the central Arctic. J. Geophys. Res., 87, 7971−7984, https://doi.org/10.1029/JC087iC10p07971.
Meier, W., and D. Notz, 2010: A note on the accuracy and reliability of satellite-derived passive microwave estimates of sea-ice extent. CliC Arctic sea ice Working Group, Consensus document. CLIC International Project Office, Tromsø, Norway. [Available online from https://www.wmo.int/pages/prog/www/OSY/Meetings/GCW-IM1/GCW_CliC_Sea_ice_Reliability.pdf]
Menemenlis, D., J. Campin, P. Heimbach, C. Hill, T. Lee, A. Nguyen, M. Schodlok, and H. Zhang, 2008: ECCO2: High resolution global ocean and sea ice data synthesis. Mercator Ocean Quarterly Newsletter, 31, 13−21.
Miles, M. W., D. V. Divine, T. Furevik, E. Jansen, M. Moros, and A. E. J. Ogilvie, 2014: A signal of persistent Atlantic multidecadal variability in Arctic sea ice. Geophys. Res. Lett., 41, 463−469, https://doi.org/10.1002/2013GL058084.
Nguyen, A. T., D. Menemenlis, and R. Kwok, 2011: Arctic ice-ocean simulation with optimized model parameters: Approach and assessment. J. Geophys. Res., 116, C04025, https://doi.org/10.1029/2010JC006573.
Notz, D., 2014: Sea-ice extent and its trend provide limited metrics of model performance. The Cryosphere, 8, 229−243.
Notz, D., A. Jahn, M. Holland, E. Hunke, F. Massonnet, J. Stroeve, B. Tremblay, and M. Vancoppenolle, 2016: The CMIP6 sea-ice model intercomparison project (SIMIP): Understanding sea ice through climate-model simulations. Geoscientific Model Development, 9, 3427−3446, https://doi.org/10.5194/gmd-9-3427-2016.
Onogi, K., and Coauthors, 2007: The JRA-25 Reanalysis. J. Meteor. Soc. Japan, 85, 369−432, https://doi.org/10.2151/jmsj.85.369.
Overland, J. E., and Coauthors, 2016: Nonlinear response of mid-latitude weather to the changing Arctic. Nature Climate Change, 6, 992−999, https://doi.org/10.1038/nclimate3121.
Overland, J. E., M. Wang, and S. Salo, 2008: The recent Arctic warm period. Tellus A, 60, 589−597, https://doi.org/10.1111/j.1600-0870.2008.00327.x.
Regehr, E. V., C. M. Hunter, H. Caswell, S. C. Amstrup, and I. Stirling, 2010: Survival and breeding of polar bears in the southern Beaufort Sea in relation to sea ice. Journal of Animal Ecology, 79, 117−127, https://doi.org/10.1111/j.1365-2656.2009.01603.x.
Sandø, A. B., J. E. Ø. Nilsen, Y. Gao, and K. Lohmann, 2010: Importance of heat transport and local air-sea heat fluxes for Barents Sea climate variability. J. Geophys. Res., 115, C07013, https://doi.org/10.1029/2009JC005884.
Sandø, A. B., Y. Gao, and H. R. Langehaug, 2014: Poleward ocean heat transports, sea ice processes, and Arctic sea ice variability in NorESM1-M simulations. J. Geophys. Res., 119, 2095−2108, https://doi.org/10.1002/2013JC009435.
Sato, K., and J. Inoue, 2018: Comparison of Arctic sea ice thickness and snow depth estimates from CFSR with in situ observations. Climate Dyn., 50, 289−301, https://doi.org/10.1007/s00382-017-3607-z.
Schweiger, A., R. Lindsay, J. L. Zhang, M. Steele, H. Stern, and R. Kwok, 2011: Uncertainty in modeled Arctic sea ice volume. J. Geophys. Res., 116, C00D06, https://doi.org/10.1029/2011JC007084.
Serreze, M. C., and R. G. Barry, 1988: Synoptic activity in the Arctic Basin, 1979-85. J. Climate, 1, 1276−1295, https://doi.org/10.1175/1520-0442(1988)001<1276:SAITAB>2.0.CO;2.
Serreze, M. C., A. P. Barrett, J. C. Stroeve, D. N. Kindig, and M. M. Holland, 2008: The emergence of surface-based Arctic amplification. The Cryosphere Discussions, 2, 601−622, https://doi.org/10.5194/tcd-2-601-2008.
Serreze, M. C., A. P. Barrett, A. D. Crawford, and R. A. Woodgate, 2019: Monthly variability in Bering Strait oceanic volume and heat transports, links to atmospheric circulation and ocean temperature, and implications for sea ice conditions. J. Geophys. Res., 124, 9317−9337, https://doi.org/10.1029/2019JC015422.
SIMIP Community., 2020: Arctic sea ice in CMIP6. Geophys. Res. Let., 47, e2019GL086749, https://doi.org/10.1029/2019GL086749.
Smedsrud, L. H., R. Ingvaldsen, J. E. Ø. qingNilsen, and Ø. Skagseth, 2010: Heat in the Barents Sea: Transport, storage, and surface fluxes. Ocean Science, 6, 219−234, https://doi.org/10.5194/os-6-219-2010.
Smith, L. C., and S. R. Stephenson, 2013: New Trans-Arctic shipping routes navigable by midcentury. Proceedings of the National Academy of Sciences of the United States of America, 110, E1191−E1195, https://doi.org/10.1073/pnas.1214212110.
Steele, M., W. Ermold, and J. L. Zhang, 2008: Arctic Ocean surface warming trends over the past 100 years. Geophys. Res. Lett., 35, L02614, https://doi.org/10.1029/2007GL031651.
Stroeve, J., and D. Notz, 2015: Insights on past and future sea-ice evolution from combining observations and models. Global and Planetary Change, 135, 119−132, https://doi.org/10.1016/j.gloplacha.2015.10.011.
Stroeve, J. and W. N. Meier. 2016. Gridded Observational Sea Ice Thickness Products, Version 1. [Indicate subset used]. NSIDC, National Snow and Ice Data Center, Boulder, Colorado, USA. [Available online from https://nsidc.org/data/NSIDC-0690/versions/1]
Stroeve, J. C., M. C. Serreze, M. M. Holland, J. E. Kay, J. Malanik, and A. P. Barrett, 2012a: The Arctic’s rapidly shrinking sea ice cover: A research synthesis. Climatic Change, 110, 1005−1027, https://doi.org/10.1007/s10584-011-0101-1.
Stroeve, J. C., V. Kattsov, A. Barrett, M. Serreze, T. Pavlova, M. Holland, and W. N. Meier, 2012b: Trends in Arctic sea ice extent from CMIP5, CMIP3 and observations. Geophys. Res. Lett., 39, L16502, https://doi.org/10.1029/2012gl052676.
Taylor, K. E., 2001: Summarizing multiple aspects of model performance in a single diagram. J. Geophys. Res., 106, 7183−7192, https://doi.org/10.1029/2000JD900719.
Tilling, R. L., A. Ridout, A. Shepherd, and D. J. Wingham, 2015: Increased Arctic sea ice volume after anomalously low melting in 2013. Nature Geoscience, 8, 643−646, https://doi.org/10.1038/ngeo2489.
Yang, Q. H., and Coauthors, 2014: Assimilating SMOS sea ice thickness into a coupled ice-ocean model using a local SEIK filter. J. Geophys. Res., 119, 6680−6692, https://doi.org/10.1002/2014JC009963.
Yang, Q. H., M. Losch, S. N. Losa, T. Jung, and L. Nerger, 2016: Taking into account atmospheric uncertainty improves sequential assimilation of SMOS sea ice thickness data in an ice−ocean model. J. Atmos. Oceanic Technol., 33, 397−407, https://doi.org/10.1175/JTECH-D-15-0176.1.
Yang, Q. H., S. N. Losa, M. Losch, J. P. Liu, Z. H. Zhang, L. Nerger, and H. Yang, 2017: Assimilating summer sea-ice concentration into a coupled ice-ocean model using a LSEIK filter. Annals of Glaciology, 56, 38−44, https://doi.org/10.3189/2015AoG69A740.
Yi, D., and H. J. Zwally., 2014: Arctic sea ice freeboard and thickness, version 1. [Available online from https://nsidc.org/data/NSIDC-0393/versions/1].
Zheng, F., and J. Zhu, 2008: Balanced multivariate model errors of an intermediate coupled model for ensemble Kalman filter data assimilation. J. Geophys. Res., 113, C07002, https://doi.org/10.1029/2007JC004621.