Almanza, V. D., R. A. Anthes, S. Chen, S., Y. Kuo, C. Wang, W. S. Schreiner, and D. Hunt, 2012: Role of sensible and latent heat fluxes from the ocean in the genesis of Tropical Cyclone Nargis (2008). American Geophysical Union, Fall Meeting 2012, Washington, AGU.
Alory, G., and G. Meyers, 2009: Warming of the upper equatorial Indian Ocean and changes in the heat budget (1960−99). J. Climate, 22, 93−113, https://doi.org/10.1175/2008JCLI2330.1.
Balaji, M., A. Chakraborty, and M. Mandal, 2018: Changes in tropical cyclone activity in north Indian Ocean during satellite era (1981−2014). International Journal of Climatology, 38, 2819−2837, https://doi.org/10.1002/joc.5463.
Barnett, T. P., D. W. Pierce, K. M. Achutarao, P. J. Gleckler, B. D. Santer, J. M. Gregory, and W. M. Washington, 2005: Penetration of human-induced warming into the world's oceans. Science, 309, 284−287, https://doi.org/10.1126/science.1112418.
Bhat, G. S., 2006: Near-surface temperature inversion over the Arabian Sea due to natural aerosols. Geophys. Res. Lett., 33, L02802, https://doi.org/10.1029/2005GL024157.
Bister, M., and K. A. Emanuel, 2002: Low frequency variability of tropical cyclone potential intensity 2. Climatology for 1982−1995. J. Geophys. Res. Atmos., 107, 4621, https://doi.org/10.1029/2001JD000780.
Boyle, J. S., 1994: The northern wintertime divergence extrema at 200 hPa and MSLP cyclones as simulated in the AMIP integration by the ECMWF general circulation model. J. Climate, 7, 24−32, https://doi.org/10.1175/1520-0442(1994)007<0024:TNWDEA>2.0.CO;2.
Camargo, S., A. H. Sobel, A. G. Barnston, and K. A. Emanuel, 2007: Tropical cyclone genesis potential index in climate models. Tellus A, 59, 428−443, https://doi.org/10.1111/j.1600-0870.2007.00238.x.
Chakravorty, S., J. S. Chowdary, and C. Gnanaseelan, 2014: Epochal changes in the seasonal evolution of Tropical Indian Ocean warming associated with El Niño. Clim. Dyn., 42, 805−822, https://doi.org/10.1007/s00382-013-1666-3.
Chan, J. C. L., 2007: Interannual variations of intense typhoon activity. Tellus A, 59, 455−460, https://doi.org/10.1111/j.1600-0870.2007.00241.x.
Chan, J. C. L., 2009: Thermodynamic control on the climate of intense tropical cyclones. Proceedings: Mathematical, Physical and Engineering Sciences, 495, 3011−3021.
Chen, S. M., W. B. Li, Y. Lu, and Z. P. Wen, 2014: Variations of latent heat flux during tropical cyclones over the South China Sea. Meteorological Applications, 21, 717−723, https://doi.org/10.1002/met.1398.
Emanuel, K., 2003: Tropical cyclones. Annual Review of Earth and Planetary Sciences, 31, 75−104, https://doi.org/10.1146/annurev.earth.31.100901.141259.
Emanuel, K. A., and D. S. Nolan, 2004: Tropical cyclone activity and the global climate system. 26th Conference on Hurricanes and Tropical Meteorology, Miami, FL, American Meteorological Society.
Emanuel, K., S. Solomon, D. Folini, S. Davis, and C. Cagnazzo, 2013: Influence of tropical tropopause layer cooling on Atlantic hurricane activity. J. Climate, 26(7), 2288−2301, https://doi.org/10.1175/JCLI-D-12-00242.1.
Erickson, S. L., and W. M. Gray, 1977: Comparison of developing vs. non-developing tropical disturbances. No. CSU-ATSP-274. Colorado State Univ. Fort. Collins Dept. of Atmospheric Science.
Evan, A. T., and S. J. Camargo, 2011: A climatology of Arabian sea cyclonic storms. J. Climate, 24, 140−158, https://doi.org/10.1175/2010JCLI3611.1.
Gray, W. M., 1968: Global view of the origin of tropical disturbances and storms. Mon. Wea. Rev., 96, 669−700, https://doi.org/10.1175/1520-0493(1968)096<0669:GVOTOO>2.0.CO;2.
Gray, W. M., 1979: Hurricanes: Their formation, structure, and likely role in the tropical circulation. Meteorology over the Tropical Oceans, D. B. Shaw, Ed., Royal Meteorological Society, 155−218.
Grodsky, S. A., A. Bentamy, J. A. Carton, and R. T. Carton, 2009: Intraseasonal latent heat flux based on satellite observations. J. Climate, 22, 4539−4556, https://doi.org/10.1175/2009JCLI2901.1.
Hill, K. A., and G. M. Lackmann, 2011: The impact of future climate change on TC intensity and structure: A downscaling approach. J. Climate, 24(17), 4644−4661, https://doi.org/10.1175/2011JCLI3761.1.
Jangir, B., D. Swain, and T. V. S. Udaya Bhaskar, 2016: Relation between tropical cyclone heat potential and cyclone intensity in the North Indian Ocean. Proc. SPIE 9882, Remote Sensing and Modeling of the Atmosphere, Oceans, and Interactions VI, New Delhi, India, SPIE, 988228, https://doi.org/10.1117/12.2228033.
Jiang, X. N., M. Zhao, and D. E. Waliser, 2012: Modulation of tropical cyclones over the Eastern Pacific by the intraseasonal variability simulated in an AGCM. J. Climate, 25, 6524−6538, https://doi.org/10.1175/JCLI-D-11-00531.1.
Jiang, X. N., B. Q. Xiang, M. Zhao, T. Li, S. J. Lin, Z. Wang, and J. H. Chen, 2018: Intraseasonal tropical cyclogenesis prediction in a global coupled model system. J. Climate, 31(15), 6209−6227, https://doi.org/10.1175/JCLI-D-17-0454.1.
Kieu, C., and D. J. Zhang, 2018: The control of environmental stratification on the hurricane maximum potential intensity. Geophys. Res. Lett., 45, 6272−6280, https://doi.org/10.1029/2018GL078070.
Kikuchi, K., and B. Wang, 2010: Formation of tropical cyclones in the Northern Indian Ocean associated with two types of tropical intraseasonal oscillation modes. J. Meteorol. Soc. Japan, 88, 475−496, https://doi.org/10.2151/jmsj.2010-313.
Krishnamohan, K. S., K. Mohanakumar, and P. V. Joseph, 2012: The influence of Madden-Julian Oscillation in the genesis of North Indian Ocean tropical cyclones. Theor. Appl. Climatol., 109, 271−282, https://doi.org/10.1007/s00704-011-0582-x.
Levitus, S., J. Antonov, and T. Boyer, 2005: Warming of the world ocean, 1955−2003. Geophys. Res. Lett., 32, L02604, https://doi.org/10.1029/2004GL021592.
Li, G., B. H. Ren, C. Y. Yang, and J. Q. Zheng, 2011: Revisiting the trend of the tropical and subtropical Pacific surface latent heat flux during 1977−2006. J. Geophys. Res. Atmos., 116, D10115, https://doi.org/10.1029/2010JD015444.
Lin, I. I., and J. C. Chan, 2015: Recent decrease in typhoon destructive potential and global warming implications. Nature Communications, 6, 7182, https://doi.org/10.1038/ncomms8182.
Liu, J. P., and J. A. Curry, 2006: Variability of the tropical and subtropical ocean surface latent heat flux during 1989−2000. Geophys. Res. Lett., 33, L05706, https://doi.org/10.1029/2005GL024809.
Ma, Z. H., J. F. Fei, X. P. Cheng, Y. Q. Wang, and X. G. Huang, 2015: Contributions of surface sensible heat fluxes to tropical cyclone. Part II: The sea spray processes. J. Atmos. Sci., 72, 4218−4236, https://doi.org/10.1175/JAS-D-15-0058.1.
Murakami, H., Wa ng, B., and A. Kitoh, 2011: Future change of western North Pacific typhoons: Projections by a 20-km-mesh global atmospheric model. J. Climate, 24(4), 1154−1169, https://doi.org/10.1175/2010JCLI3723.1.
Murakami, H., G. A. Vecchi, and S. Underwood, 2017: Increasing frequency of extremely severe cyclonic storms over the Arabian Sea. Nat. Clim. Change, 7, 885−889, https://doi.org/10.1038/s41558-017-0008-6.
Muthuchami, A., and P. Dhanavanthan, 2007: Probable storm motion in the Bay of Bengal in April and May. J. Ind. Geophys. Union, 11(4), 209−215.
Ng, E. K. W., and J. C. L. Chan, 2012: Interannual variations of tropical cyclone activity over the north Indian Ocean. International Journal of Climatology, 32, 819−830, https://doi.org/10.1002/joc.2304.
Pattanaik, D. R., 2005: Variability of oceanic and atmospheric conditions during active and inactive periods of storms over the Indian region. International Journal of Climatology, 25, 1523−1530, https://doi.org/10.1002/joc.1189.
Rajeevan, M., J. Srinivasan, K. Niranjan Kumar, C. Gnanaseelan, and M. M. Ali, 2013: On the epochal variation of intensity of tropical cyclones in the Arabian Sea. Atmos. Sci. Let., 14, 249−255, https://doi.org/10.1002/asl2.447.
Rao, S. A., A. R. Dhakate, S. K. Saha, S. Mahapatra, H. S. Chaudhari, S. Pokhrel, and S. K. Sahu, 2012: Why is Indian Ocean warming consistently? Clim. Change, 110, 709−719, https://doi.org/10.1007/s10584-011-0121-x.
Ratna, S. B., A. Cherchi, P. V. Joseph, S. K. Behera, B. Abish, and S. Masina, 2016: Moisture variability over the Indo‐Pacific region and its influence on the Indian summer monsoon rainfall. Clim. Dyn., 46, 949−965, https://doi.org/10.1007/s00382-015-2624-z.
Rayner, N. A., D. E. Parker, E. B. Horton, C. K. Folland, L. V. Alexander, D. P. Rowell, E. C. Kent, and A. Kaplan, 2003: Global analyses of sea surface temperature, sea ice, and night marine air temperature since the late nineteenth century. J. Geophys. Res. Atmos., 108(D14), 4407, https://doi.org/10.1029/2002JD002670.
Sahoo, B., and P. K. Bhaskaran, 2016: Assessment on historical cyclone tracks in the Bay of Bengal, east coast of India. Int. J. Climatol., 36, 95−109, https://doi.org/10.1002/joc.4331.
Saji, N. H., and T. Yamagata, 2003: Possible impacts of Indian Ocean Dipole Mode events on global climate. Climate Research, 25, 151−169, https://doi.org/10.3354/cr025151.
Saji, N. H., B. N. Goswami, P. N. Vinayachandran, and T. Yamagata, 1999: A dipole mode in the tropical Indian Ocean. Nature, 401, 360−363, https://doi.org/10.1038/43855.
Sebastian, M., and M. R. Behera, 2015: Impact of SST on tropical cyclones in North Indian Ocean. Procedia Engineering, 116, 1072−1077, https://doi.org/10.1016/j.proeng.2015.08.346.
Shen, W. X., R. E. Tuleya, and I. Ginis, 2000: A sensitivity study of the thermodynamic environment on GFDL model hurricane intensity: Implications for global warming. J. Climate, 13(1), 109−121, https://doi.org/10.1175/1520-0442(2000)013<0109:ASSOTT>2.0.CO;2.
Singh, O. P., 2008: Indian Ocean dipole mode and tropical cyclone frequency. Current Science, 94(1), 29−31.
Strazzo, S. E., J. B. Elsner, T. E. LaRow, H. Murakami, M. Wehner, and M. Zhao, 2016: The influence of model resolution on the simulated sensitivity of North Atlantic tropical cyclone maximum intensity to sea surface temperature. Journal of Advances in Modeling Earth Systems, 8(3), 1037−1054, https://doi.org/10.1002/2016MS000635.
Sumesh, K. G., and M. R. Ramesh Kumar, 2013: Tropical cyclones over north Indian Ocean during El-Niño Modoki years. Natural Hazards, 68(2), 1057−1074, https://doi.org/10.1007/s11069-013-0679-x.
Tuleya, R. E., M. Bender, T. R. Knutson, J. J. Sirutis, B. Thomas, and I. Ginis, 2016: Impact of upper-tropospheric temperature anomalies and vertical wind shear on tropical cyclone evolution using an idealized version of the operational GFDL hurricane model. J. Atmos. Sci., 73, 3803−3820, https://doi.org/10.1175/JAS-D-16-0045.1.
Wang, B., Y. X. Yang, Q. H. Ding, H. Murakami, and F. Huang, 2010: Climate control of the global tropical storm days (1965−2008). Geophys. Res. Lett., 37, L07704, https://doi.org/10.1029/2010GL042487.
Wang, L., R. H. Huang, and R. G. Wu, 2013: Interdecadal variability in tropical cyclone frequency over the South China Sea and its association with the Indian Ocean sea surface temperature. Geophys. Res. Lett., 40, 768−771, https://doi.org/10.1002/GRL.50171.
Xavier, P. K., and P. V. Joseph, 2000: Vertical wind shear in relation to frequency of monsoon depressions and tropical cyclones of Indian Seas. Proc. TROPMET-2000, National Symp. on Ocean and Atmosphere, Cochin, India, Indian Meteorological Society, 232−245.
Yu, L. S., X. Z. Jin, and R. Z. Weller, 2007: Annual, seasonal, and interannual variability of air-sea heat fluxes in the Indian Ocean. J. Climate, 20, 3190−3209, https://doi.org/10.1175/JCLI4163.1.
Yu, L. X., X. Jin, and R. A. Weller, 2008: Multidecade Global Flux Datasets from the Objectively Analyzed Air-sea Fluxes (OAFlux) Project: Latent and sensible heat fluxes, ocean evaporation, and related surface meteorological variables. OA-2008-01, 64 pp.
Zehr, R. M., 1992: Tropical cyclogenesis in the western north Pacific. NOAA Tech. Res. NESDIS 61, 181 pp.
Zeng, L. L., and D. X. Wang, 2009: Intraseasonal variability of latent-heat flux in the South China Sea. Theor. Appl. Climatol., 97, 53−64, https://doi.org/10.1007/s00704-009-0131-z.
Zhang, S., M. Zhao, S. J. Lin, X. S. Yang, W. Anderson, A. Rosati, S. Underwood, and F. Zeng, 2015: Impact of having realistic tropical cyclone frequency on ocean heat content and transport forecasts in a high-resolution coupled model. Geophys. Res. Lett., 42(14), 5966−5973, https://doi.org/10.1002/2015GL064745.
Zhang, W., G. Villarini, G. A. Vecchi, and H. Murakami, 2019: Rainfall from tropical cyclones: high-resolution simulations and seasonal forecasts. Clim. Dyn., 52, 5269−5289, https://doi.org/10.1007/s00382-018-4446-2.
Zhao, H. K., and C. Z. Wang, 2019: On the relationship between ENSO and tropical cyclones in the western North Pacific during the boreal summer. Clim. Dyn., 52, 275−288, https://doi.org/10.1007/s00382-018-4136-0.
Zhao, H. K., L. G. Wu, and G. B. Raga, 2018: Inter-decadal change of the lagged inter-annual relationship between local sea surface temperature and tropical cyclone activity over the western North Pacific. Theor. Appl. Climatol., 134, 707−720, https://doi.org/10.1007/s00704-018-2420-x.
Zhao, H. K., X. N. Jiang, and L. G. Wu, 2015a: Modulation of northwest Pacific tropical cyclone genesis by the intraseasonal variability. J. Meteorol. Soc. Japan, 93(1), 81−97, https://doi.org/10.2151/jmsj.2015-006.
Zhao, H. K., R. Yoshida, and G. B. Raga, 2015b: Impact of the Madden-Julian oscillation on Western North Pacific tropical cyclogenesis associated with large-scale patterns. J. Appl. Meteor. Climatol., 54, 1413−1429, https://doi.org/10.1175/JAMC-D-14-0254.1.
Zhou, L. T., G. S. Chen, and R. G. Wu, 2015: Change in surface latent heat flux and its association with tropical cyclone genesis in the western North Pacific. Theor. Appl. Climatol., 119, 221−227, https://doi.org/10.1007/s00704-014-1096-0.