Aguilera, R., T. Corringham, A. Gershunov, and T. Benmarhnia, 2021: Wildfire smoke impacts respiratory health more than fine particles from other sources: Observational evidence from Southern California. Nature Communications, 12, 1493. https://doi.org/10.1038/s41467-021-21708-0.
Arriagada, N. B., A. J. Palmer, D. M. J. S. Bowman, G. G. Morgan, B. B. Jalaludin, and F. H. Johnston, 2020: Unprecedented smoke-related health burden associated with the 2019−20 bushfires in eastern Australia. Medical Journal of Australia, 213, 282−283, https://doi.org/10.5694.mja2.50545.
Aubry-Wake, C., A. Bertoncini, and J. W. Pomeroy, 2022: Fire and ice: The impact of wildfire-affected albedo and irradiance on glacier melt. Earth’s Future, 10, e2022EF002685. https://doi.org/10.1029/2022ef002685.
Bernath, P., C. Boone, and J. Crouse, 2022: Wildfire smoke destroys stratospheric ozone. Science, 375, 1292−1295, https://doi.org/10.1126/science.abm5611.
Bowman, D. M. J. S., C. A. Kolden, J. T. Abatzoglou, F. H. Johnston, G. R. van der Werf, and M. Flannigan, 2020: Vegetation fires in the Anthropocene. Nature Reviews Earth & Environment, 1, 500−515, https://doi.org/10.1038/s43017-020-0085-3.
Bowman, D. M. J. S., and Coauthors, 2009: Fire in the earth system. Science, 324, 481−484, https://doi.org/10.1126/science.1163886.
Chen, G. B., and Coauthors, 2021: Mortality risk attributable to wildfire-related PM2.5 pollution: A global time series study in 749 locations. The Lancet Planetary Health, 5, e579−e587, https://doi.org/10.1016/s2542-5196(21)00200-x.
Di Giuseppe, F., S. Rémy, F. Pappenberger, and F. Wetterhall, 2018: Using the Fire Weather Index (FWI) to improve the estimation of fire emissions from fire radiative power (FRP) observations. Atmospheric Chemistry and Physics, 18, 5359−5370, https://doi.org/10.5194/acp-18-5359-2018.
Liu, Z. H., A. P. Ballantyne, and L. A. Cooper, 2019: Biophysical feedback of global forest fires on surface temperature. Nature Communications, 10, 214. https://doi.org/10.1038/s41467-018-08237-z.
Liu, Z. H., and Coauthors, 2023: Carbon emissions, impacts, and mitigation strategies of forest fires. Bulletin of Chinese Academy of Sciences, 38, 1552−1560, https://doi.org/10.16418/j.issn.1000-3045.20230823001.
Roberts, G., and M. J. Wooster, 2021: Global impact of landscape fire emissions on surface level PM2.5 concentrations, air quality exposure and population mortality. Atmospheric Environment, 252, 118210. https://doi.org/10.1016/j.atmosenv.2021.118210.
Tang, W. Y., and Coauthors, 2021: Widespread phytoplankton blooms triggered by 2019−2020 Australian wildfires. Nature, 597 , 370−375, https://doi.org/10.1038/s41586-021-03805-8.
van der Velde, I. R., and Coauthors, 2021: Vast CO2 release from Australian fires in 2019−2020 constrained by satellite. Nature, 597, 366−369, https://doi.org/10.1038/s41586-021-03712-y.
Wei, Y., and Coauthors, 2019: IAP-AACM v1.0: A global to regional evaluation of the atmospheric chemistry model in CAS-ESM. Atmospheric Chemistry and Physics, 19, 8269−8296, https://doi.org/10.5194/acp-19-8269-2019.
Xu, R. B., and Coauthors, 2023: Global population exposure to landscape fire air pollution from 2000 to 2019. Nature, 621, 521−529, https://doi.org/10.1038/s41586-023-06398-6.
Yu, P. F., and Coauthors, 2019: Black carbon lofts wildfire smoke high into the stratosphere to form a persistent plume. Science, 365, 587−590, https://doi.org/10.1126/science.aax1748.
Zheng, B., P. Ciais, F. Chevallier, E. Chuvieco, Y. Chen, and H. Yang, 2021a: Increasing forest fire emissions despite the decline in global burned area. Science Advances, 7, eabh2646. https://doi.org/10.1126/sciadv.abh2646.
Zheng, B., Q. Zhang, G. N. Geng, C. H. Chen, Q. R. Shi, M. S. Cui, Y. Lei, and K. B. He, 2021b: Changes in China's anthropogenic emissions and air quality during the COVID-19 pandemic in 2020. Earth System Science Data, 13, 2895−2907, https://doi.org/10.5194/essd-13-2895-2021.
Zheng, B., and Coauthors, 2023: Record-high CO2 emissions from boreal fires in 2021. Science, 379, 912−917, https://doi.org/10.1126/science.ade0805.