Cai, Y., Z. A. Qian, T. W. Wu, X. Y. Liang, and M. H. Song, 2004: Distribution, changes of atmospheric precipitable water over Qinghai-Xizang Plateau and its surroundings and their changeable precipitation climate. Plateau Meteorology, 23(1), 1−10, https://doi.org/10.3321/j.issn:1000-0534.2004.01.001. (in Chinese with English abstract
Chen, Q. L., X. R. Liu, G. Z. Fan, and W. Hua, 2010: Features of summer precipitation change over the West Sichuan Plateau and its relationship with large-scale circulations. Journal of Desert Research, 30(3), 706−711. (in Chinese with English abstract)
Deng, M. Y., R. Y. Lu, and C. F. Li, 2022: Contrasts between the interannual variations of extreme rainfall over western and eastern Sichuan in mid-summer. Adv. Atmos. Sci., 39(6), 999−1011, https://doi.org/10.1007/s00376-021-1219-3.
Ding, J., L. Cuo, Y. X. Zhang, C. J. Zhang, L. Q. Liang, and Z. Liu, 2021: Annual and seasonal precipitation and their extremes over the Tibetan Plateau and its surroundings in 1963–2015. Atmosphere, 12(5), 620, https://doi.org/10.3390/atmos12050620.
Du, H. B., and Coauthors, 2022: Extreme precipitation on consecutive days occurs more often in a warming climate. Bull. Amer. Meteor. Soc., 103(4), E1130−E1145, https://doi.org/10.1175/BAMS-D-21-0140.1.
Feng, L., and F. Y. Wei, 2008: Regional characteristics of summer precipitation on Tibetan Plateau and it's water vapor feature in neighboring areas. Plateau Meteorology, 27(3), 491−499. (in Chinese with English abstract)
Fu, Y., G. S. Liu, G. X. Wu, R. C. Yu, Y. P. Xu, Y. Wang, R. Li, and Q. Liu, 2006: Tower mast of precipitation over central Tibetan plateau summer. Geophysical Research Letters, 33, L05802, https://doi.org/10.1029/2005GL024713.
Fu, Y., Y. M. Ma, L. Zhong, Y. J. Yang, X. L. Guo, C. H. Wang, X. F. Xu, K. Yang, X. D. Xu, L. P. Liu, G. Z. Fan, Y. Q. Li, and D. H. Wang, 2020: Land-surface processes and summer-cloud-precipitation characteristics in the Tibetan Plateau and their effects on downstream weather: a review and perspective. Natl Sci Rev, 7, 500−515, https://doi.org/10.1093/nsr/nwz226.
Fujita, M., and T. Sato, 2017: Observed behaviours of precipitable water vapour and precipitation intensity in response to upper air profiles estimated from surface air temperature. Scientific Reports, 7, 4233, https://doi.org/10.1038/s41598-017-04443-9.
Gao, Y. H., L. Cuo, and Y. X. Zhang, 2014: Changes in moisture flux over the Tibetan Plateau during 1979-2011 and possible mechanisms. J. Climate, 27(5), 1876−1893, https://doi.org/10.1175/JCLI-D-13-00321.1.
He, B. R., and P. M. Zhai, 2018: Changes in persistent and non-persistent extreme precipitation in China from 1961 to 2016. Advances in Climate Change Research, 9(3), 177−184, https://doi.org/10.1016/j.accre.2018.08.002.
Hegerl, G. C., and Coauthors, 2019: Causes of climate change over the historical record. Environmental Research Letters, 14(12), 123006, https://doi.org/10.1088/1748-9326/ab4557.
Hibino, K., I. Takayabu, Y. Wakazuki, and T. Ogata, 2018: Physical responses of convective heavy rainfall to future warming condition: Case study of the Hiroshima Event. Frontiers in Earth Science, 6, 35, https://doi.org/10.3389/feart.2018.00035.
Hu, D., and Y. Q. Li, 2015: Spatial and temporal variations of nocturnal precipitation in Sichuan over the eastern Tibetan Plateau. Chinese Journal of Atmospheric Sciences, 39(1), 161−179, https://doi.org/10.3878/j.issn.1006-9895.1405.13307. (in Chinese with English abstract
Hu, Y. M., P. M. Zhai, L. H. Liu, Y. Chen, and Y. J. Liu, 2015: Dominant large-scale atmospheric circulation systems for the extreme precipitation over the western Sichuan Basin in summer 2013. Advances in Meteorology, 2015, 690363, https://doi.org/10.1155/2015/690363.
Huang, J., S. L. Sun, Y. Xue, J. J. Li, and J. C. Zhang, 2014: Spatial and temporal variability of precipitation and dryness/wetness during 1961−2008 in Sichuan Province, West China. Water Resources Management, 28, 1655−1670, https://doi.org/10.1007/s11269-014-0572-8.
Kundzewicz, Z. W., and Coauthors, 2005: Summer floods in Central Europe – Climate change track? Natural Hazards, 36(1), 165−189, https://doi.org/10.1007/s11069-004-4547-6.
Kunkel, K. E., S. E. Stevens, L. E. Stevens, and T. R. Karl, 2020: Observed climatological relationships of extreme daily precipitation events with precipitable water and vertical velocity in the contiguous United States. Geophys. Res. Lett., 47(12), e2019GL086721, https://doi.org/10.1029/2019GL086721.
Li, J., W. J. Dong, and Z. W. Yan, 2012: Changes of climate extremes of temperature and precipitation in summer in eastern China associated with changes in atmospheric circulation in East Asia during 1960−2008. Chinese Science Bulletin, 57(15), 1856−1861, https://doi.org/10.1007/s11434-012-4989-2.
Li, J., Y. D. Zhao, and J. Iqbal, 2019: Variation patterns of extreme precipitation and relation to ocean-atmospheric climate in Sichuan province China from 1961 to 2017. Theor. Appl. Climatol., 137, 3009−3026, https://doi.org/10.1007/s00704-019-02792-1.
Li, L., S. Yang, Z. Y. Wang, X. D. Zhu, and H. Y. Tang, 2010: Evidence of warming and wetting climate over the Qinghai-Tibet Plateau. Arctic, Antarctic, and Alpine Research, 42(4), 449−457, https://doi.org/10.1657/1938-4246-42.4.449.
Li, Z. W., and P. A. O'Gorman, 2020: Response of vertical velocities in extratropical precipitation extremes to climate change. J. Climate, 33, 7125−7139, https://doi.org/10.1175/JCLI-D-19-0766.1.
Liu, K., M. Wang, and T. J. Zhou, 2021: Increasing costs to Chinese railway infrastructure by extreme precipitation in a warmer world. Transportation Research Part D: Transport and Environment, 93, 102797, https://doi.org/10.1016/j.trd.2021.102797.
Liu, W. B., L. Wang, D. L. Chen, K. Tu, C. Q. Ruan, and Z. Y. Hu, 2016: Large-scale circulation classification and its links to observed precipitation in the eastern and central Tibetan Plateau. Climate Dyn., 46, 3481−3497, https://doi.org/10.1007/s00382-015-2782-z.
Liu, Y. M., Y. F. Yan, J. H. Lü, and X. L. Liu, 2018: Review of current investigations of cloud, radiation and rainfall over the Tibetan Plateau with the CloudSat/CALIPSO dataset. Chinese Journal of Atmospheric Sciences, 42(4), 847−858, https://doi.org/10.3878/j.issn.1006-9895.1805.17281. (in Chinese with English abstract
Lu, C. F., and C. X. Cai, 2019: Challenges and countermeasures for construction safety during the Sichuan–Tibet Railway Project. Engineering, 5(5), 833−838, https://doi.org/10.1016/j.eng.2019.06.007.
Lu, S., Z. Y. Hu, H. P. Yu, W. W. Fan, C. W. Fu, and D. Wu, 2021: Changes of extreme precipitation and its associated mechanisms in Northwest China. Adv. Atmos. Sci., 38(10), 1665−1681, https://doi.org/10.1007/s00376-021-0409-3.
Myhre, G., and Coauthors, 2019: Frequency of extreme precipitation increases extensively with event rareness under global warming. Scientific Reports, 9(1), 16063, https://doi.org/10.1038/s41598-019-52277-4.
Nayak, S., and T. Takemi, 2021: Atmospheric driving mechanisms of extreme precipitation events in July of 2017 and 2018 in western Japan. Dyn. Atmos. Oceans, 93, 101186, https://doi.org/10.1016/j.dynatmoce.2020.101186.
Nie, J., P. X. Dai, and A. H. Sobel, 2020: Dry and moist dynamics shape regional patterns of extreme precipitation sensitivity. Proceedings of the National Academy of Sciences of the United States of America, 117, 8757−8763, https://doi.org/10.1073/pnas.1913584117.
O'Gorman, P. A., and T. Schneider, 2009: The physical basis for increases in precipitation extremes in simulations of 21st-century climate change. Proceedings of the National Academy of Sciences of the United States of America, 106(35), 14 773−14 777,
Palin, E. J., I. S. Oslakovic, K. Gavin, and A. Quinn, 2021: Implications of climate change for railway infrastructure. WIREs Climate Change, 12(5), e728, https://doi.org/10.1002/wcc.728.
Pan, X., Y. F. Fu, S. Yang, Y. Gong, and D. Q. Li, 2021: Diurnal variations of precipitation over the steep slopes of the Himalayas observed by TRMM PR and VIRS. Adv. Atmos. Sci., 38(4), 641−660, https://doi.org/10.1007/s00376-020-0246-9.
Shi, P. J., and W. T. Yang, 2020: Compound effects of earthquakes and extreme weathers on geo-hazards in mountains. Climate Change Research, 16(4), 405−414, https://doi.org/10.12006/j.issn.1673-1719.2019.174. (in Chinese with English abstract
Smith, R. B., 1989a: Hydrostatic airflow over mountains. Advances in Geophysics, 31, 1−41, https://doi.org/10.1016/S0065-2687(08)60052-7.
Smith, R. B., 1989b: Mountain-induced stagnation points in hydrostatic flow. Tellus A, 41, 270−274, https://doi.org/10.3402/tellusa.v41i3.11839.
Smith, R. B., 2019: 100 years of progress on mountain meteorology research. Meteor. Monogr., 59, 20.1−20.73, https://doi.org/10.1175/AMSMONOGRAPHS-D-18-0022.1.
Snyder, W. H., R. S. Thompson, R. E. Eskridge, R. E. Lawson, I. P. Castro, J. T. Lee, J. C. R. Hunt, and Y. Ogawa, 1985: The structure of strongly stratified flow over hills: Dividing-streamline concept. J. Fluid Mech., 152, 249−288, https://doi.org/10.1017/S0022112085000684.
Sun, J., and F. Q. Zhang, 2017: Daily extreme precipitation and trends over China. Science China Earth Sciences, 60(12), 2190−2203, https://doi.org/10.1007/s11430-016-9117-8.
Sun, J., X. P. Yao, G. W. Deng, and Y. Liu, 2021: Characteristics and synoptic patterns of regional extreme rainfall over the Central and Eastern Tibetan Plateau in boreal summer. Atmosphere, 12(3), 379, https://doi.org/10.3390/atmos12030379.
Sun, J., K. Yang, W. D. Guo, Y. Wang, J. He, and H. Lu, 2020: Why has the Inner Tibetan Plateau become wetter since the Mid-1990s? J. Climate, 33(19), 8507−8522, https://doi.org/10.1175/JCLI-D-19-0471.1.
Tang, G. A., 2019: China Digital Elevation Map (1KM). National Data Center for Qinghai-Tibet Plateau Science. [Available online from http://www.tpdc.ac.cn/zh-hans/data/12e91073-0181-44bf-8308-c50e5bd9a734/]
Webster, P. J., V. E. Toma, and H.-M. Kim, 2011: Were the 2010 Pakistan floods predictable. Geophys. Res. Lett., 38(4), L04806, https://doi.org/10.1029/2010GL046346.
Xiong, J. N., Z. W. Yong, Z. G. Wang, W. M. Cheng, Y. Li, H. Zhang, C. C. Ye, and Y. M. Yang, 2019: Spatial and temporal patterns of the extreme precipitation across the Tibetan Plateau (1986−2015). Water, 11(7), 1453, https://doi.org/10.3390/w11071453.
Xue, Y. G., F. M. Kong, S. C. Li, Q. S. Zhang, D. H. Qiu, M. X. Su, and Z. Q. Li, 2021: China starts the world's hardest "Sky-High Road" project: Challenges and countermeasures for Sichuan-Tibet railway. Innovation, 2(2), 100105, https://doi.org/10.1016/j.xinn.2021.100105.
Yang, W. Y., D. Z. Ye, and G. X. Wu, 1992: The influence of the Tibetan Plateau on the thermal and circulation fields over East Asia in summer II: Main features of the local circulation fields and the large-scale vertical circulation fields. Scientia Atmospherica Sinica, 16, 287−301, https://doi.org/10.3878/j.issn.1006-9895.1992.03.05. (in Chinese with English abstract
Yao, S. B., D. B. Jiang, and G. Z. Fan, 2017: Seasonality of precipitation over China. Chinese Journal of Atmospheric Sciences, 41(6), 1191−1203, https://doi.org/10.3878/j.issn.1006-9895.1703.16233. (in Chinese with English abstract
Yeh, T. C, G. J. Yang, and X. D. Wang, 1979: The average vertical circulations over the East-Asia and the Pacific area, (I) In Summer. Scientia Atmospherica Sinica, 3, 1−11. (in Chinese with English abstract)
You, Q. L., S. C. Kang, E. Aguilar, and Y. P. Yan, 2008: Changes in daily climate extremes in the eastern and central Tibetan Plateau during 1961−2005. J. Geophys. Res., 113(D7), D07101, https://doi.org/10.1029/2007JD009389.
Zhai, P. M., and X. H. Pan, 2003: Change in extreme temperature and precipitation over northern China during the second half of the 20th Century. Acta Geographica Sinica, 58(Z1), 1−10, https://doi.org/10.3321/j.issn:0375-5444.2003.z1.001. (in Chinese with English abstract
Zhai, P. M., X. B. Zhang, H. Wan, and X. H. Pan, 2005: Trends in total precipitation and frequency of daily precipitation extremes over China. J. Climate, 18(7), 1096−1108, https://doi.org/10.1175/JCLI-3318.1.
Zhang, J. P., T. B. Zhao, L. B. Zhou, and L. K. Ran, 2021: Historical changes and future projections of extreme temperature and precipitation along the Sichuan–Tibet Railway. J. Meteor. Res., 35(3), 402−415, https://doi.org/10.1007/s13351-021-0175-2.
Zhang, X., X. P. Yao, J. L. Ma, and Z. G. Mima, 2016: Climatology of transverse shear lines related to heavy rainfall over the Tibetan Plateau during boreal summer. J. Meteor. Res., 30(6), 915−926, https://doi.org/10.1007/s13351-016-6952-7.
Zhang, X. B., L. Alexander, G. C. Hegerl, P. Jones, A. K. Tank, T. C. Peterson, B. Trewin, and F. W. Zwiers, 2011: Indices for monitoring changes in extremes based on daily temperature and precipitation data. WIREs Climate Change, 2(6), 851−870, https://doi.org/10.1002/wcc.147.
Zhang, Y., H. X. Ren, and X. D. Pan, 2019a: Integration dataset of Tibet Plateau boundary. National Tibetan Plateau Data Center, doi: 10.11888/Geogra.tpdc.270099.CSTR:18406.11.Geogra.tpdc.270099. [Available online from http://data.tpdc.ac.cn/zh-hans/data/61701a2b-31e5-41bf-b0a3-607c2a9bd3b3/]
Zhang, Y. H., M. Xue, K. F. Zhu, and B. W. Zhou, 2019b: What is the main cause of diurnal variation and nocturnal peak of summer precipitation in Sichuan Basin, China? The key role of boundary layer low-level jet inertial oscillations J. Geophys. Res.: Atmos., 124(5), 2643−2664, https://doi.org/10.1029/2018JD029834.
Zhao, D., L. X. Zhang, and T. J. Zhou, 2022: Detectable anthropogenic forcing on the long-term changes of summer precipitation over the Tibetan Plateau. Climate Dyn., 59, 1939−1952, https://doi.org/10.1007/s00382-022-06189-1.
Zhao, W. H., and Coauthors, 2018: Declining hailstorm frequency in China during 1961−2015 and its potential influential factors. International Journal of Climatology, 38(11), 4116−4126, https://doi.org/10.1002/joc.5556.
Zhou, J. S., and H. L. Liu, 1981: The basic features of distribution of water vapour content and their controlling factors in China. Acta Geographica Sinica, 36(4), 377−391, https://doi.org/10.11821/xb198104004. (in Chinese)
Zhou, T. J., and Coauthors, 2022: 2021: A year of unprecedented climate extremes in Eastern Asia, North America, and Europe. Adv. Atmos. Sci., 39, 1598−1607, https://doi.org/10.1007/S00376-022-2063-9.
Zhu, L. P., and Coauthors, 2015: Climate change on the Tibetan Plateau in response to shifting atmospheric circulation since the LGM. Scientific Reports, 5, 13318, https://doi.org/10.1038/srep13318.