Austin, R., 2007: Level 2B radar-only cloud water content (2B-CWC-RO) process description document, version 5.1. CloudSat Project Report, 24 pp. [Available from http://www.cloudsat.cira.colostate.edu/data-products/level-2b/2b-cwc-ro?term=28.]
Du, Z. C., R. H. Huang, G. Huang, and J. L. Chen, 2011: The characteristics of spatial and temporal distributions of convective rainfall and stratiform rainfall in the Asian monsoon region and their possible mechanisms. Chinese Journal of Atmospheric Sciences, 35, 993−1008, https://doi.org/10.3878/j.issn.1006-9895.2011.06.01. (in Chinese)
Duan, A. M., G. X. Wu, and X. Y. Liang, 2008: Influence of the Tibetan Plateau on the summer climate patterns over Asia in the IAP/LASG SAMIL model. Adv. Atmos. Sci., 25, 518−528, https://doi.org/10.1007/s00376-008-0518-2.
Dufresne, J. L., and S. Bony, 2008: An assessment of the primary sources of spread of global warming estimates from coupled atmosphere-ocean models. J. Climate, 21, 5135−5144, https://doi.org/10.1175/2008JCLI2239.1.
Fu, Y. F., and G. S. Liu, 2007: Possible misidentification of rain type by TRMM PR over Tibetan Plateau. Journal of Applied Meteorology and Climatology, 46, 667−672, https://doi.org/10.1175/jam2484.1.
Fu, Y. F., Y. H. Lin, G. S. Liu, and Q. Wang, 2003: Seasonal characteristics of precipitation in 1998 over East Asia as derived from TRMM PR. Adv. Atmos. Sci., 20, 511−529, https://doi.org/10.1007/BF02915495.
Fu, Y. F., A. M. Zhang, Y. Liu, Y. Y. Zheng, Y. F. Hu, S. Feng, and A. Q. Cao, 2008: Characteristics of seasonal scale convective and stratiform precipitation in Asia based on measurements by TRMM Precipitation Radar. Acta Meteorologica Sinica, 66, 730−746, https://doi.org/10.3321/j.issn:0577-6619.2008.05.007. (in Chinese)
Fu, Y. F., A. Q. Cao, T. Y. Li, S. Feng, Y. Y. Zheng, Y. Liu, and A. M. Zhang, 2012: Climatic characteristics of the storm top altitude for the convective and stratiform precipitation in summer Asia based on measurements of the TRMM Precipitation Radar. Acta Meteorologica Sinica, 70, 436−451, https://doi.org/10.11676/qxxb2012.037. (in Chinese)
Fu, Y. F., and Coauthors, 2016: Recent trends of summer convective and stratiform precipitation in mid-Eastern China. Scientific Reports, 6, 33044, https://doi.org/10.1038/srep33044.
Henderson, D., T. L’Ecuyer, D. Vane, G. Stephens, and D. Reinke, 2011: Level 2B fluxes and heating rates and 2B fluxes and heating rates w/Lidar process description and interface control document, version 1.0. CloudSat Project Report, 28 pp. [Available from http://www.cloudsat.cira.colostate.edu/data-products/level-2b/2b-flxhr-lidar?term=38.]
Heymsfield, A. J., and Coauthors, 2008: Testing IWC retrieval methods using radar and ancillary measurements with in situ data. Journal of Applied Meteorology and Climatology, 47, 135−163, https://doi.org/10.1175/2007JAMC1606.1.
Hong, Y. L., and G. S. Liu, 2015: The characteristics of ice cloud properties derived from CloudSat and CALIPSO measurements. J. Climate, 28, 3880−3901, https://doi.org/10.1175/JCLI-D-14-00666.1.
Houze, R. A., 1982: Cloud clusters and large-scale vertical motions in the tropics. J. Meteor. Soc. Japan, 60, 396−410, https://doi.org/10.2151/jmsj1965.60.1_396.
Houze, R. A., D. C. Wilton, and B. F. Smull, 2007: Monsoon convection in the Himalayan region as seen by the TRMM Precipitation Radar. Quart. J. Roy. Meteor. Soc., 133, 1389−1411, https://doi.org/10.1002/qj.106.
Hu, L., S. Yang, and Y. D. Li, 2010: Diurnal and seasonal climatology of precipitation depth over the Tibetan Plateau and its downstream regions. Chinese Journal of Atmospheric Sciences, 34, 387−398, https://doi.org/10.3878/j.issn.1006-9895.2010.02.12. (in Chinese)
Hu, L., Y. D. Li, S. Yang, and D. F. Deng, 2011: Seasonal variability in tropical and subtropical convective and stratiform precipitation of the East Asian monsoon. Science China Earth Sciences, 54, 1595−1603, https://doi.org/10.1007/s11430-011-4225-y.
Hu, Z. X., H. C. Lei, X. L. Guo, D. Z. Jin, Y. B. Qi, and X. Q. Zhang, 2007: Studies of the structure of a stratiform cloud and the physical processes of precipitation formation. Chinese Journal of Atmospheric Sciences, 31, 425−439, https://doi.org/10.3878/j.issn.1006-9895.2007.03.06. (in Chinese)
Huffman, G. J., and Coauthors, 2007: The TRMM multisatellite precipitation analysis (TMPA): Quasi-global, multiyear, combined-sensor precipitation estimates at fine scales. Journal of Hydrometeorology, 8, 38−55, https://doi.org/10.1175/jhm560.1.
Jiang, J. X., X. K. Xiang, and M. Z. Fan, 1996: The spatial and temporal distributions of severe mesoscale convective systems over Tibetan Plateau in summer. Quarterly Journal of Applied Meteorology, 7, 473−478. (in Chinese)
Li. Y. Y., and M. H. Zhang, 2016: Cumulus over the Tibetan Plateau in the summer based on CloudSat-CALIPSO data. J. Climate, 29, 1219−1230, https://doi.org/10.1175/JCLI-D-15-0492.1.
Li, Y. Y., R. C. Yu, Y. P. Xu, and X. H. Zhang, 2004: Spatial distribution and seasonal variation of cloud over China based on ISCCP data and surface observations. J. Meteor. Soc. Japan, 82, 761−773, https://doi.org/10.2151/jmsj.2004.761.
Liu, P., C. Y. Li, Y. Wang, and Y. F. Fu, 2013: Climatic characteristics of convective and stratiform precipitation over the Tropical and Subtropical areas as derived from TRMM PR. Science China Earth Sciences, 56, 375−385, https://doi.org/10.1007/s11430-012-4474-4.
Liu, Y. M., Q. Bao, A. M. Duan, Z. A. Qian, and G. X. Wu, 2007: Recent progress in the impact of the Tibetan Plateau on climate in China. Adv. Atmos. Sci., 24, 1060−1076, https://doi.org/10.1007/s00376-007-1060-3.
Lu, C. S., Y. G. Liu, S. J. Niu, and S. Endo, 2014: Scale dependence of entrainment-mixing mechanisms in cumulus clouds. J. Geophys. Res. Atmos., 119, 13 877−13 890, https://doi.org/10.1002/2014JD022265.
Luo, Y. L., R. H. Zhang, and H. Wang, 2009: Comparing occurrences and vertical structures of hydrometeors between eastern China and the Indian monsoon region using CloudSat/CALIPSO data. J. Climate, 22, 1052−1064, https://doi.org/10.1175/2008JCLI2606.1.
Luo, Y. L., R. H. Zhang, and W. M. Qian, 2011: Intercomparison of deep convection over the Tibetan Plateau-Asian monsoon region and subtropical North America in boreal summer using CloudSat/CALIPSO Data. J. Climate, 24, 2164−2177, https://doi.org/10.1175/2010jcli4032.1.
Mace, G., 2007: Level 2 GEOPROF product: Process description and interface control document algorithm, version 5.3. CloudSat Project Report, 42pp. [Available from http://www.cloudsat.cira.colostate.edu/data-products/level-2b/2b-geoprof?term=42.]
Mace, G., D. Vane, G. Stephens, and D. Reinke, 2007: Level 2 radar-lidar GEOPROF product: Process description and interface control document, version 1.0. CloudSat Project Report, 20pp. [Available from http://www.cloudsat.cira.colostate.edu/data-products/level-2b/2b-geoprof-lidar?term=48.]
Matrosov, S. Y., 2007: Potential for attenuation-based estimations of rainfall rate from CloudSat. Geophys. Res. Lett., 34, L05817, https://doi.org/10.1029/2006GL029161.
Pan, X., and Y. F. Fu, 2015: Analysis on climatological characteristics of deep and shallow precipitation cloud in summer over Qinghai-Xizang Plateau. Plateau Meteorology, 34, 1191−1203, https://doi.org/10.7522/j.issn.1000-0534.2014.00112. (in Chinese)
Peng, J., H. Zhang, and Z. Q. Li, 2014: Temporal and spatial variations of global deep cloud systems based on CloudSat and CALIPSO satellite observations. Adv. Atmos. Sci., 31, 593−603, https://doi.org/10.1007/s00376-013-3055-6.
Rüthrich, F., B. Thies, C. Reudenbach, and J. Bendix, 2013: Cloud detection and analysis on the Tibetan Plateau using Meteosat and CloudSat. J. Geophys. Res. Atmos., 118, 10 082−10 099, https://doi.org/10.1002/jgrd.50790.
Sassen, K., and Z. E. Wang, 2008: Classifying clouds around the globe with the CloudSat radar: 1-year of results. Geophys. Res. Lett., 35, L04805, https://doi.org/10.1029/2007GL032591.
Schumacher, C., and R. A. Houze Jr., 2003: Stratiform rain in the Tropics as seen by the TRMM Precipitation Radar. J. Climate, 16, 1739−1756, https://doi.org/10.1175/1520-0442(2003)016<1739:SRITTA>2.0.CO;2.
Shimizu, S., K. Ueno, H. Fujii, H. Yamada, R. Shirooka, and L. P. Liu, 2001: Mesoscale characteristics and structures of stratiform precipitation on the Tibetan Plateau. J. Meteor. Soc. Japan, 79, 435−461, https://doi.org/10.2151/jmsj.79.435.
Stephens, G. L., and Coauthors, 2002: The Cloudsat mission and the A-Train: A new dimension of space-based observations of clouds and precipitation. Bull. Amer. Meteor. Soc., 83, 1771−1790, https://doi.org/10.1175/bams-83-12-1771.
Tao, W. K., S. Lang, X. P. Zeng, S. Shige, and Y. Takayabu, 2010: Relating convective and stratiform rain to latent heating. J. Climate, 23, 1874−1893, https://doi.org/10.1175/2009JCLI3278.1.
Uyeda, H., and Coauthors, 2001: Characteristics of convective clouds observed by a Doppler radar at Naqu on Tibetan Plateau during the GAME-Tibet IOP. J. Meteor. Soc. Japan, 79, 463−474, https://doi.org/10.2151/jmsj.79.463.
Wang, H., Y. L. Luo, and R. H. Zhang, 2011b: Analyzing seasonal variation of clouds over the Asian monsoon regions and the Tibetan Plateau region using CloudSat/CALIPSO data. Chinese Journal of Atmospheric Sciences, 35, 1117−1131, https://doi.org/10.3878/j.issn.1006-9895.2011.06.11. (in Chinese)
Wang, X. C., Q. Bao, K. Liu, G. X. Wu, and Y. M. Liu, 2011a: Features of rainfall and latent heating structure simulated by two convective parameterization schemes. Science China Earth Sciences, 54, 1779−1788, https://doi.org/10.1007/s11430-011-4282-2.
Wang, Z. E., D. Vane, G. Stephens, and D. Reinke, 2012: Level 2 combined radar and lidar cloud scenario classification product: Process description and interface control document, version 1.0. CloudSat Project Report, 61 pp. [Available from http://www.cloudsat.cira.colostate.edu/data-products/level-2b/2b-cldclass-lidar?term=26]
Winker, D. M., W. H. Hunt, and M. J. McGill, 2007: Initial performance assessment of CALIOP. Geophys. Res. Lett., 34, L19803, https://doi.org/10.1029/2007gl030135.
Wu, G. X., and Y. S. Zhang, 1998: Tibetan Plateau forcing and the timing of the monsoon onset over South Asia and the South China Sea. Mon. Wea. Rev., 126, 913−927, https://doi.org/10.1175/1520-0493(1998)126<0913:Tpfatt>2.0.Co;2.
Wu, Y. H., and L. P. Liu, 2017: Statistical characteristics of raindrop size distribution in the Tibetan Plateau and southern China. Adv. Atmos. Sci., 34(6), 727−736, https://doi.org/10.1007/s00376-016-5235-7.
Xu, W. X., 2013: Precipitation and convective characteristics of summer deep convection over East Asia observed by TRMM. Mon. Wea. Rev., 141, 1577−1592, https://doi.org/10.1175/MWR-D-12-00177.1.
Xu, X. D., C. G. Lu, X. H. Shi, and S. T. Gao, 2008: World water tower: An atmospheric perspective. Geophys. Res. Lett., 35, L20815, https://doi.org/10.1029/2008GL035867.
Yan, Y. F., Y. M. Liu, and J. H. Lu, 2016: Cloud vertical structure, precipitation, and cloud radiative effects over Tibetan Plateau and its neighboring regions. J. Geophys. Res. Atmos., 121, 5864−5877, https://doi.org/10.1002/2015JD024591.
Yan, Y. F., X. C. Wang, and Y. M. Liu, 2018: Cloud vertical structures associated with precipitation magnitudes over the Tibetan Plateau and its neighboring regions. Atmospheric and Oceanic Science Letters, 11, 44−53, https://doi.org/10.1080/16742834.2018.1395680.
Yu, R. C., B. Wang, and T. J. Zhou, 2004: Climate effects of the deep continental stratus clouds generated by the Tibetan Plateau. J. Climate, 17, 2702−2713, https://doi.org/10.1175/1520-0442(2004)017<2702:CEOTDC>2.0.CO;2.
Zhang, M. H., and Coauthors, 2005: Comparing clouds and their seasonal variations in 10 atmospheric general circulation models with satellite measurements. J. Geophys. Res. Atmos., 110, D15S02, https://doi.org/10.1029/2004JD005021.
Zhang, Y., H. M. Chen and R. C. Yu, 2014: Vertical structures and physical properties of the cold-season stratus clouds downstream of the Tibetan Plateau: Differences between daytime and nighttime. J. Climate, 27, 6857−6876, https://doi.org/10.1175/jcli-d-14-00063.1.