Adler, R. F., and Coauthors, 2018: The global precipitation climatology project (GPCP) monthly analysis (New Version 2.3) and a review of 2017 global precipitation. Atmosphere, 9, https://doi.org/10.3390/atmos9040138.
Bao, Q., and J. Li, 2020: Progress in climate modeling of precipitation over the Tibetan Plateau. National Science Review, 7, 486−487, https://doi.org/10.1093/nsr/nwaa006.
Bao, Q., G. X. Wu, Y. M. Liu, J. Yang, Z. Z. Wang, and T. J. Zhou, 2010: An introduction to the coupled model FGOALS1.1-s and its performance in East Asia. Adv. Atmos. Sci., 27, 1131−1142, https://doi.org/10.1007/s00376-010-9177-1.
Bao, Q., and Coauthors, 2013: The flexible global ocean-atmosphere-land system model, spectral version 2: FGOALS-s2. Adv. Atmos. Sci., 30, 561−576, https://doi.org/10.1007/s00376-012-2113-9.
Bao, Q., and Coauthors, 2020: CAS FGOALS-f3-H and CAS FGOALS-f3-L outputs for the high-resolution model intercomparison project simulation of CMIP6. Atmos. Ocean. Sci. Lett., 13, 576−581, https://doi.org/10.1080/16742834.2020.1814675.
Bryan, F. O., R. Tomas, J. M. Dennis, D. B. Chelton, N. G. Loeb, and J. L. McClean, 2010: Frontal scale air-sea interaction in high-resolution coupled climate models. J. Climate, 23, 6277−6291, https://doi.org/10.1175/2010JCLI3665.1.
Canuto, V. M., A. Howard, Y. Cheng, and M. S. Dubovikov, 2001: Ocean turbulence. Part I: One-point closure model—Momentum and heat vertical diffusivities. J. Phys. Oceanogr., 31, 1413−1426, https://doi.org/10.1175/1520-0485(2001)031<1413:OTPIOP>2.0.CO;2.
Chelton, D. B., M. G. Schlax, and R. M. Samelson, 2011: Global observations of nonlinear mesoscale eddies. Progress in Oceanography, 91, 167−216, https://doi.org/10.1016/j.pocean.2011.01.002.
Cheng, L. J., K. E. Trenberth, J. Fasullo, T. Boyer, J. Abraham, and J. Zhu, 2017: Improved estimates of ocean heat content from 1960 to 2015. Science Advances, 3, e1601545, https://doi.org/10.1126/sciadv.1601545.
Craig, A. P., M. Vertenstein, and R. Jacob, 2012: A new flexible coupler for earth system modeling developed for CCSM4 and CESM1. The International Journal of High Performance Computing Applications, 26, 31−42, https://doi.org/10.1177/1094342011428141.
Dai, A. G., 2006: Precipitation characteristics in eighteen coupled climate models. J. Climate, 19, 4605−4630, https://doi.org/10.1175/JCLI3884.1.
Delworth, T. L., and Coauthors, 2012: Simulated climate and climate change in the GFDL CM2.5 high-resolution coupled climate model. J. Climate, 25, 2755−2781, https://doi.org/10.1175/JCLI-D-11-00316.1.
Eyring, V., S. Bony, G. A. Meehl, C. A. Senior, B. Stevens, R. J. Stouffer, and K. E. Taylor, 2016: Overview of the coupled model intercomparison project phase 6 (CMIP6) experimental design and organization. Geoscientific Model Development, 9, 1937−1958, https://doi.org/10.5194/gmd-9-1937-2016.
Ferreira, D., J. Marshall, and P. Heimbach, 2005: Estimating eddy stresses by fitting dynamics to observations using a residual-mean ocean circulation model and its adjoint. J. Phys. Oceanogr., 35, 1891−1910, https://doi.org/10.1175/JPO2785.1.
Good, S. A., M. J. Martin, and N. A. Rayner, 2013: EN4: Quality controlled ocean temperature and salinity profiles and monthly objective analyses with uncertainty estimates. J. Geophys. Res., 118, 6704−6716, https://doi.org/10.1002/2013JC009067.
Griffies, S. M., and Coauthors, 2015: Impacts on ocean heat from transient mesoscale eddies in a hierarchy of climate models. J. Climate, 28, 952−977, https://doi.org/10.1175/JCLI-D-14-00353.1.
Guo, Y. Y., Y. Q. Yu, P. F. Lin, H. L. Liu, B. He, Q. Bao, S. W. Zhao, and X. W. Wang, 2020: Overview of the CMIP6 historical experiment datasets with the climate system model CAS FGOALS-f3-L. Adv. Atmos. Sci., 37, 1057−1066, https://doi.org/10.1007/s00376-020-2004-4.
Haarsma, R. J., and Coauthors, 2016: High resolution model intercomparison project (HighResMIP v1.0) for CMIP6. Geoscientific Model Development, 9, 4185−4208, https://doi.org/10.5194/gmd-9-4185-2016.
Hallberg, R., 2013: Using a resolution function to regulate parameterizations of oceanic mesoscale eddy effects. Ocean Modelling, 72, 92−103, https://doi.org/10.1016/j.ocemod.2013.08.007.
He, B., and Coauthors, 2019: CAS FGOALS-f3-L model datasets for CMIP6 historical atmospheric model intercomparison project simulation. Adv. Atmos. Sci., 36, 771−778, https://doi.org/10.1007/s00376-019-9027-8.
Hewitt, H. T., and Coauthors, 2017: Will high-resolution global ocean models benefit coupled predictions on short-range to climate timescales? Ocean Modelling, 120, 120−136, https://doi.org/10.1016/j.ocemod.2017.11.002.
Huang, B. Y., C. Y. Liu, V. Banzon, E. Freeman, G. Graham, B. Hankins, T. Smith, and H. M. Zhang, 2021: Improvements of the daily optimum interpolation sea surface temperature (DOISST) version 2.1. J. Climate, 34, 2923−2939, https://doi.org/10.1175/JCLI-D-20-0166.1.
Huffman, G. J., D. T. Bolvin, D. Braithwaite, K. Hsu, R. Joyce, and P. P. Xie, 2014: Integrated multi-satellitE retrievals for GPM (IMERG). Version 4.4, NASA's Precipitation Processing Center, accessed 31 March, 2015, 26 pp. [Available online from ftp://arthurhou.pps.eosdis.nasa.gov/gpmdata/]
Hunke, E. C., and W. H. Lipscomb, 2010: CICE: The Los Alamos sea ice model documentation and software user's manual, version 4.0. Tech. Rep. LA-CC-06-012, 72 pp.
Kobayashi, S., and Coauthors, 2015: The JRA-55 reanalysis: General specifications and basic characteristics. J. Meteor. Soc. Japan, 93, 5−48, https://doi.org/10.2151/jmsj.2015-001.
Lawrence, D. M., and Coauthors, 2011: Parameterization improvements and functional and structural advances in version 4 of the community land model. Journal of Advances in Modeling Earth Systems, 3, M03001, https://doi.org/10.1029/2011MS00045.
Li, L. J., and Coauthors, 2013: The flexible global ocean-atmosphere-land system model, Grid-point Version 2: FGOALS-g2. Adv. Atmos. Sci., 30, 543−560, https://doi.org/10.1007/s00376-012-2140-6.
Li, X. L., Y. Q. Yu, H. L. Liu, and P. F. Lin, 2017: Sensitivity of atlantic meridional overturning circulation to the dynamical framework in an ocean general circulation model. Journal of Meteorological Research, 31, 490−501, https://doi.org/10.1007/s13351-017-6109-3.
Li, L. J., and Coauthors, 2020a: The flexible global ocean-atmosphere-land system model grid-point version 3 (FGOALS-g3): Description and evaluation. Journal of Advances in Modeling Earth Systems, 12, e2019MS002012, https://doi.org/10.1029/2019MS002012.
Li, Y. W., and Coauthors, 2020b: Eddy-resolving simulation of CAS-LICOM3 for phase 2 of the ocean model intercomparison project. Adv. Atmos. Sci., 37, 1067−1080, https://doi.org/10.1007/s00376-020-0057-z.
Li, J. X., and Coauthors, 2021: Effect of horizontal resolution on the simulation of tropical cyclones in the Chinese Academy of Sciences FGOALS-f3 climate system model. Geoscientific Model Development, 14, 6113−6133, https://doi.org/10.5194/gmd-14-6113-2021.
Lin, P. F., H. L. Liu, and X. H. Zhang, 2007: Sensitivity of the upper ocean temperature and circulation in the equatorial Pacific to solar radiation penetration due to phytoplankton. Adv. Atmos. Sci., 24, 765−780, https://doi.org/10.1007/s00376-007-0765-7.
Lin, P. F., H. L. Liu, J. Ma, and Y. W. Li, 2019: Ocean mesoscale structure–induced air–sea interaction in a high-resolution coupled model. Atmos. Ocean. Sci. Lett., 12, 98−106, https://doi.org/10.1080/16742834.2019.1569454.
Liu, H. L., P. F. Lin, Y. Q. Yu, and X. H. Zhang, 2012: The baseline evaluation of LASG/IAP climate system ocean model (LICOM) version 2. Acta Meteorologica Sinica, 26, 318−329, https://doi.org/10.1007/s13351-012-0305-y.
Murray, R. J., 1996: Explicit generation of orthogonal grids for ocean models. J. Comput. Phys., 126, 251−273, https://doi.org/10.1006/jcph.1996.0136.
Rayner, N. A., D. E. Parker, E. B. Horton, C. K. Folland, L. V. Alexander, D. P. Rowell, E. C. Kent, and A. Kaplan, 2003: Global analyses of sea surface temperature, sea ice, and night marine air temperature since the late nineteenth century. J. Geophys. Res., 108, 4407, https://doi.org/10.1029/2002JD002670.
Small, R. J., and Coauthors, 2008: Air–sea interaction over ocean fronts and eddies. Dyn. Atmos. Oceans, 45, 274−319, https://doi.org/10.1016/j.dynatmoce.2008.01.001.
St. Laurent, L. C., H. L. Simmons, and S. R. Jayne, 2002: Estimating tidally driven mixing in the deep ocean. Geophys. Res. Lett., 29, 2106, https://doi.org/10.1029/2002GL015633.
Stevens, B., S. Fiedler, S. Kinne, K. Peters, S. Rast, J. Müsse, S. J. Smith, and T. Mauritsen, 2016: Simple Plumes: A parameterization of anthropogenic aerosol optical properties and an associated Twomey effect for climate studies. Geoscientific Model Development Disscussions, 1−34, https://doi.org/10.5194/gmd-2016-189.
Windnagel, A., W. Meier, S. Stewart, F. Fetterer, and T. Stafford, 2021: NOAA/NSIDC climate data record of passive microwave sea ice concentration version 4 analysis. NSIDC Spec. Rep. 20, 18 pp.
Xie, S. P., 2004: Satellite observations of cool ocean-atmosphere interaction. Bull. Amer. Meteor. Soc., 85, 195−208, https://doi.org/10.1175/BAMS-85-2-195.
Yu, Y. Q., R. C. Yu, X. H. Zhang, and H. L. Liu, 2002: A flexible coupled ocean-atmosphere general circulation model. Adv. Atmos. Sci., 19, 169−190, https://doi.org/10.1007/s00376-002-0042-8.
Yu, Y. Q., X. H. Zhang, and Y. F. Guo, 2004: Global coupled ocean-atmosphere general circulation models in LASG/IAP. Adv. Atmos. Sci., 21, 444−455, https://doi.org/10.1007/BF02915571.
Yu, Y. Q., W. P. Zheng, B. Wang, H. L. Liu, and J. P. Liu, 2011: Versions g1.0 and g1.1 of the LASG/IAP flexible global ocean-atmosphere-land system model. Adv. Atmos. Sci., 28, 99−117, https://doi.org/10.1007/s00376-010-9112-5.
Yu, Z. P., H. L. Liu, and P. F. Lin, 2017: A numerical study of the influence of tidal mixing on Atlantic Meridional Overturning Circulation (AMOC) simulation. Chinese Journal of Atmospheric Sciences, 41, 1087−1100, https://doi.org/10.3878/j.issn.1006-9895.1702.16263. (in Chinese with English abstract
Yu, Y. Q., S. L. Tang, H. L. Liu, P. F. Lin, and X. L. Li, 2018: Development and evaluation of the dynamic framework of an ocean general circulation model with arbitrary orthogonal curvilinear coordinate. Chinese Journal of Atmospheric Sciences, 42, 877−889, https://doi.org/10.3878/j.issn.1006-9895.1805.17284. (in Chinese with English abstract
Zhang, X. H., and X. Z. Liang, 1989: A numerical world ocean general circulation model. Adv. Atmos. Sci., 6, 44−61, https://doi.org/10.1007/BF02656917.
Zhou, L. J., and Coauthors, 2015: Global energy and water balance: Characteristics from finite-volume atmospheric model of the IAP/LASG (FAMIL1). Journal of Advances in Modeling Earth Systems, 7, 1−20, https://doi.org/10.1002/2014MS000349.
Zhou, T. J., and Coauthors, 2018: The FGOALS climate system model as a modeling tool for supporting climate sciences: An overview. Earth and Planetary Physics, 2, 276−291, https://doi.org/10.26464/epp2018026.