Ashok, K., S. K. Behera, S. A. Rao, H. Y. Weng, and T. Yamagata, 2007: El Niño Modoki and its possible teleconnection. J. Geophys. Res., 112(C11), C11007, https://doi.org/10.1029/2006JC003798.
Behringer, D. W., and Y. Xue, 2004: Evaluation of the global ocean data assimilation system at NCEP: The Pacific Ocean. Eighth Symposium on Integrated Observing and Assimilation Systems for Atmosphere, Oceans, and Land Surface, AMS 84th Annual Meeting, Washington State Convention and Trade Center, Seattle, Washington, 11−15.
Bjerknes, J., 1969: Atmospheric teleconnections from the equatorial Pacific. Mon. Wea. Rev., 97(3), 163−172, https://doi.org/10.1175/1520-0493(1969)097<0163:ATFTEP>2.3.CO;2.
Capotondi, A., and Coauthors, 2015: Understanding ENSO diversity. Bull. Amer. Meteor. Soc., 96, 921−938, https://doi.org/10.1175/BAMS-D-13-00117.1.
Carton, J. A. and B. S. Giese, 2008: A Reanalysis of Ocean Climate Using Simple Ocean Data Assimilation (SODA). Mon. Weather Rev., 136, 2999−3017, https://doi.org/10.1175/2007MWR1978.1.
Chen, D. K., and Coauthors, 2015: Strong influence of westerly wind bursts on El Niño diversity. Nature Geoscience, 8(5), 339−345, https://doi.org/10.1038/ngeo2399.
Chen, M. Y., J.-Y. Yu, X. Wang, and W. P. Jiang, 2019: The changing impact mechanisms of a diverse El Niño on the Western Pacific subtropical high. Geophys. Res. Lett., 46(2), 953−962, https://doi.org/10.1029/2018GL081131.
Chen, M. Y., T.-H. Chang, C.-T. Lee, S.-W. Fang, and J.-Y. Yu, 2021a: A study of climate model responses of the western Pacific subtropical high to El Niño diversity. Climate Dyn., 56, 581−595, https://doi.org/10.1007/s00382-020-05500-2.
Chen, M. Y., J.-Y. Yu, X. Wang, and S. Chen, 2021b: Distinct onset mechanisms of two subtypes of CP El Niño and their changes in future warming. Geophys. Res. Lett., 48, e2021GL093707, https://doi.org/10.1029/2021GL093707.
Chen, S. F., B. Yu, W. Chen, and R. G. Wu, 2018: A review of atmosphere-ocean forcings outside the Tropical Pacific on the El Niño-southern oscillation occurrence. Atmosphere, 9, 439, https://doi.org/10.3390/atmos9110439.
Chiang, J. C. H., and D. J. Vimont, 2004: Analogous Pacific and Atlantic meridional modes of tropical atmosphere-ocean variability. J. Climate, 17, 4143−4158, https://doi.org/10.1175/JCLI4953.1.
Compo, G. P., and Coauthors, 2011: The twentieth century reanalysis project. Quart. J. Roy. Meteor. Soc., 137(654), 1−28, https://doi.org/10.1002/qj.776.
Fang, S.-W., and J.-Y. Yu, 2020: A control of ENSO transition complexity by Tropical Pacific mean SSTs through tropical-subtropical interaction. Geophys. Res. Lett., 47, e2020GL087933, https://doi.org/10.1029/2020GL087933.
Giese, B. S., and S. Ray, 2011: El Niño variability in simple ocean data assimilation (SODA), 1871−2008. J. Geophys. Res., 116, C02024, https://doi.org/10.1029/2010JC006695.
Hu, S. N., and A. V. Fedorov, 2016: Exceptionally strong easterly wind burst stalling El Niño of 2014. Proceedings of the National Academy of Sciences of the United States of America, 113(8), 2005−2010, https://doi.org/10.1073/pnas.1514182113.
Huang, B. Y., Y. Xue, D. X. Zhang, A. Kumar, and M. J. McPhaden, 2010: The NCEP GODAS ocean analysis of the tropical pacific mixed layer heat budget on seasonal to interannual time scales. J. Climate, 23(18), 4901−4925, https://doi.org/10.1175/2010JCLI3373.1.
Huang, B. Y., and Coauthors, 2017: Extended reconstructed sea surface temperature, version 5 (ERSSTv5): Upgrades, validations, and intercomparisons. J. Climate, 30(20), 8179−8205, https://doi.org/10.1175/JCLI-D-16-0836.1.
Huo, W.-J., and Z.-N. Xiao, 2016: The impact of solar activity on the 2015/16 El Niño event. Atmos. Ocean. Sci. Lett., 9(6), 428−435, https://doi.org/10.1080/16742834.2016.1231567.
Kalnay, E., and Coauthors, 1996: The NCEP/NCAR 40-year reanalysis project. Bull. Amer. Meteor. Soc., 77, 437−472, https://doi.org/10.1175/1520-0477(1996)077<0437:TNYRP>2.0.CO;2.
Kao, H.-Y., and J.-Y. Yu, 2009: Contrasting eastern-pacific and central-pacific types of ENSO. J. Climate, 22(3), 615−632, https://doi.org/10.1175/2008JCLI2309.1.
Kim, J.-W., T.-H. Chang, C.-T. Lee, and J.-Y. Yu, 2021: On the varying responses of East Asian winter monsoon to three types of El Nino: Observations and model hindcasts. J. Climate, 34, 4089−4101, https://doi.org/10.1175/JCLI-D-20-0784.1.
Kug, J.-S., F.-F. Jin, and S.-I. An, 2009: Two types of El Niño events: Cold tongue El Niño and warm pool El Niño. J. Climate, 22(6), 1499−1515, https://doi.org/10.1175/2008JCLI2624.1.
Lai, A. W.-C., M. Herzog, and H.-F. Graf, 2015: Two key parameters for the El Niño continuum: Zonal wind anomalies and Western Pacific subsurface potential temperature. Climate Dyn., 45(11−12), 3461−3480, https://doi.org/10.1007/s00382-015-2550-0.
Larkin, N. K., and D. E. Harrison, 2005: On the definition of El Niño and associated seasonal average U.S. weather anomalies. Geophys. Res. Lett., 32(13), L13705, https://doi.org/10.1029/2005GL022738.
Liu, L., G. Yang, X. Zhao, L. Feng, G. Q. Han, Y. Wu, and W. D. Yu, 2017: Why was the Indian Ocean dipole weak in the context of the extreme El Niño in 2015. J. Climate, 30(12), 4755−4761, https://doi.org/10.1175/JCLI-D-16-0281.1.
Liu, Q.-Y., D. X. Wang, X. Wang, Y. Q. Shu, Q. Xie, and J. Chen, 2014: Thermal variations in the South China Sea associated with the eastern and central Pacific El Niño events and their mechanisms. J. Geophys. Res., 119(12), 8955−8972, https://doi.org/10.1002/2014JC010429.
Liu, Y. Y., Z.-Z. Hu, and R. G. Wu, 2020: Was the extremely wet winter of 2018/2019 in the lower reach of the Yangtze River driven by El Niño-Southern Oscillation. International Journal of Climatology, 40, 6441−6457, https://doi.org/10.1002/joc.6591.
Min, Q. Y., J. Z. Su, R. H. Zhang, and X. Y. Rong, 2015: What hindered the El Niño pattern in 2014. Geophys. Res. Lett., 42, 6762−6770, https://doi.org/10.1002/2015GL064899.
Palmeiro, F. M., M. Iza, D. Barriopedro, N. Calvo, and R. García-Herrera, 2017: The complex behavior of El Niño winter 2015−2016. Geophys. Res. Lett., 44(6), 2902−2910, https://doi.org/10.1002/2017GL072920.
Rogers, J. C. 1981: The North Pacific oscillation. International Journal of Climatology, 1(1), 39−57,
Schneider, U., A. Becker, P. Finger, A. Meyer-Christoffer, B. Rudolf, and M. Ziese, 2011: GPCC full data reanalysis version 6.0 at 1.0: Monthly land-surface precipitation from rain-gauges built on GTS-based and historic data,
Schneider, U., A. Becker, P. Finger, A. Meyer-Christoffer, B. Rudolf, and M. Ziese, 2016: GPCC full data reanalysis version 7.0: Monthly land-surface precipitation from rain gauges built on GTS based and historic data,
Tan, W., X. Wang, W. Q. Wang, C. Z. Wang, and J. C. Zuo, 2016: Different responses of sea surface temperature in the South China sea to various El Niño events during boreal autumn. J. Climate, 29(3), 1127−1142, https://doi.org/10.1175/JCLI-D-15-0338.1.
Vimont, D. J., D. S. Battisti, and A. C. Hirst, 2001: Footprinting: A seasonal connection between the tropics and mid-latitudes. Geophys. Res. Lett., 28, 3923−3926, https://doi.org/10.1029/2001GL013435.
Wang, C. Z., and X. Wang, 2013: Classifying El Niño Modoki I and II by different impacts on rainfall in southern China and typhoon tracks. J. Climate, 26(4), 1322−1338, https://doi.org/10.1175/JCLI-D-12-00107.1.
Wang, W., F. Xin, X. Pan, Y. Zhang, and T. Li, 2020a: Seasonal and sub-seasonal circulation anomalies associated with persistent rainy days in 2018/2019 winter in Shanghai, China. Journal of Meteorological Research, 34(2), 304−314, https://doi.org/10.1007/s13351-020-9163-1.
Wang, X., and C. Z. Wang, 2014: Different impacts of various El Niño events on the Indian Ocean Dipole. Climate Dyn., 42(3-4), 991−1005, https://doi.org/10.1007/s00382-013-1711-2.
Wang, X., W. Tan, and C. Z. Wang, 2018: A new index for identifying different types of El Niño Modoki events. Climate Dyn., 50(7), 2753−2765, https://doi.org/10.1007/s00382-017-3769-8.
Wang, X., M. Y. Chen, C. Z. Wang, S.-W. Yeh, and W. Tan, 2019b: Evaluation of performance of CMIP5 models in simulating the North Pacific Oscillation and El Niño Modoki. Climate Dyn., 52, 1383−1394, https://doi.org/10.1007/s00382-018-4196-1.
Wang, X., C. Y. Guan, R. X. Huang, W. Tan, and L. Wang, 2019c: The roles of tropical and subtropical wind stress anomalies in the El Niño Modoki onset. Climate Dyn., 52, 6585−6597, https://doi.org/10.1007/s00382-018-4534-3.
Wang, X., B. Tong, D. X. Wang, and L. Yang, 2020b: Variations of the North Equatorial current bifurcation and the SSH in the Western Pacific associated with El Niño flavors. J. Geophys. Res., 125, e2019JC015733, https://doi.org/10.1029/2019JC015733.
Xie, S.-P., and S. G. H. Philander, 1994: A coupled ocean-atmosphere model of relevance to the ITCZ in the eastern Pacific. Tellus A: Dynamic Meteorology and Oceanography, 46(4), 340−350, https://doi.org/10.3402/tellusa.v46i4.15484.
Yeh, S.-W., X. Wang, C. Z. Wang, and B. Dewitte, 2015: On the relationship between the north Pacific climate variability and the central Pacific El Niño. J. Climate, 28, 663−677, https://doi.org/10.1175/JCLI-D-14-00137.1.
Yeh, S.-W., D.-W. Yi, M.-K. Sung, and Y. H. Kim, 2018: An eastward shift of the North Pacific oscillation after the mid-1990s and its relationship with ENSO. Geophys. Res. Lett., 45(13), 6654−6660, https://doi.org/10.1029/2018GL078671.
Yu, J.-Y., and H.-Y. Kao, 2007: Decadal changes of ENSO persistence barrier in SST and ocean heat content indices: 1958−2001. J. Geophys. Res., 112(13), D13106, https://doi.org/10.1029/2006JD007654.
Yu, J.-Y., and S. T. Kim, 2011: Relationships between extratropical sea level pressure variations and the Central Pacific and Eastern Pacific types of ENSO. J. Climate, 24, 708−720, https://doi.org/10.1175/2010JCLI3688.1.
Yu, J.-Y., and S.-W. Fang, 2018: The distinct contributions of the seasonal footprinting and charged-discharged mechanisms to ENSO complexity. Geophys. Res. Lett., 45, 6611−6618, https://doi.org/10.1029/2018GL077664.
Yu, J.-Y., H.-Y. Kao, and T. Lee, 2010: Subtropics-related interannual sea surface temperature variability in the central equatorial pacific. J. Climate, 23(11), 2869−2884, https://doi.org/10.1175/2010JCLI3171.1.
Yu, J.-Y., X. Wang, S. Yang, H. Paek, and M. Y. Chen, 2017: The changing El Niño-southern oscillation and associated climate extremes. Climate Extremes: Patterns and Mechanisms, Wang et al., Eds., American Geophysical Union,