Browning, K. A., M. E. Hardman, T. W. Harrold, and C. W. Pardoe, 1973: The structure of rainbands within a mid-latitude depression. Quart. J. Roy. Meteor. Soc., 99, 215−231, https://doi.org/10.1002/qj.49709942002.
Burrows, S. M., and Coauthors, 2022: Ice-nucleating particles that impact clouds and climate: Observational and modeling research needs. Rev. Geophys., 60, e2021RG000745. https://doi.org/10.1029/2021RG000745.
Dacre, H. F., O. Martínez-Alvarado, and C. O. Mbengue, 2019: Linking atmospheric rivers and warm conveyor belt airflows. Journal of Hydrometeorology, 20, 1183−1196, https://doi.org/10.1175/JHM-D-18-0175.1.
Field, P. R., A. J. Heymsfield, and A. Bansemer, 2006: Shattering and particle interarrival times measured by optical array probes in ice clouds. J. Atmos. Oceanic Technol., 23, 1357−1371, https://doi.org/10.1175/JTECH1922.1.
Fries, J., G. Sardina, G. Svensson, and B. Mehlig, 2021: Key parameters for droplet evaporation and mixing at the cloud edge. Quart. J. Roy. Meteor. Soc., 147, 2160−2172, https://doi.org/10.1002/qj.4015.
Gehring, J., A. Oertel, É. Vignon, N. Jullien, N. Besic, and A. Berne, 2020: Microphysics and dynamics of snowfall associated with a warm conveyor belt over Korea. Atmospheric Chemistry and Physics, 20, 7373−7392, https://doi.org/10.5194/acp-20-7373-2020.
Guo, J. X., H. C. Lei, D. Chen, and J. F. Yang, 2019: Evaluation of the WDM6 scheme in the simulation of number concentrations and drop size distributions of warm-rain hydrometeors: Comparisons with the observations and other schemes. Atmospheric and Oceanic Science Letters, 12, 458−466, https://doi.org/10.1080/16742834.2019.1670584.
Hawcroft, M. K., L. C. Shaffrey, K. I. Hodges, and H. F. Dacre, 2012: How much Northern Hemisphere precipitation is associated with extratropical cyclones?. Geophys. Res. Lett., 39, L24809. https://doi.org/10.1029/2012GL053866.
Joos, H., and H. Wernli, 2012: Influence of microphysical processes on the potential vorticity development in a warm conveyor belt: A case-study with the limited-area model COSMO. Quart. J. Roy. Meteor. Soc., 138, 407−418, https://doi.org/10.1002/qj.934.
Keppas, S. C., J. Crosier, T. W. Choularton, and K. N. Bower, 2018: Microphysical properties and radar polarimetric features within a warm front. Mon. Wea. Rev., 146, 2003−2022, https://doi.org/10.1175/MWR-D-18-0056.1.
Khain, A., B. Lynn, and J. Dudhia, 2010: Aerosol effects on intensity of landfalling hurricanes as seen from simulations with the WRF model with spectral bin microphysics. J. Atmos. Sci., 67, 365−384, https://doi.org/10.1175/2009JAS3210.1.
Krämer, M., C. Rolf, A. Luebke, A. Afchine, N. Spelten, and Coauthors, 2016: A microphysics guide to cirrus clouds – Part 1: Cirrus types. Atmos. Chem. Phys., 16, 3463−3483, https://doi.org/10.5194/acp-16-3463-2016.
Lei, H. C., J. X. Guo, D. Chen, and J. F. Yang, 2020: Systematic bias in the prediction of warm-rain hydrometeors in the WDM6 microphysics scheme and modifications. J. Geophys. Res.: Atmos., 125, e2019JD030756. https://doi.org/10.1029/2019JD030756.
Madonna, E., H. Wernli, H. Joos, and O. Martius, 2014: Warm conveyor belts in the ERA-Interim dataset (1979–2010). Part I: Climatology and potential vorticity evolution. J. Climate, 27, 3−26, https://doi.org/10.1175/JCLI-D-12-00720.1.
Morrison, H., and J. A. Milbrandt, 2015: Parameterization of cloud microphysics based on the prediction of bulk ice particle properties. Part I: Scheme description and idealized tests. J. Atmos. Sci., 72, 287−311, https://doi.org/10.1175/JAS-D-14-0065.1.
Pfahl, S., E. Madonna, M. Boettcher, H. Joos, and H. Wernli, 2014: Warm conveyor belts in the ERA-Interim dataset (1979–2010). Part II: Moisture origin and relevance for precipitation. J. Climate, 27, 27−40, https://doi.org/10.1175/JCLI-D-13-00223.1.
Rosenfeld, D., and Coauthors, 2013: The common occurrence of highly supercooled drizzle and rain near the coastal regions of the western United States. J. Geophys. Res.: Atmos., 118, 9819−9833, https://doi.org/10.1002/jgrd.50529.
Rutz, J. J., W. J. Steenburgh, and F. M. Ralph, 2014: Climatological characteristics of atmospheric rivers and their inland penetration over the Western United States. Mon. Wea. Rev., 142, 905−921, https://doi.org/10.1175/MWR-D-13-00168.1.
Schäfler, A., A. Dörnbrack, H. Wernli, C. Kiemle, and S. Pfahl, 2011: Airborne lidar observations in the inflow region of a warm conveyor belt. Quart. J. Roy. Meteor. Soc., 137, 1257−1272, https://doi.org/10.1002/qj.827.
Sprenger, M., and H. Wernli, 2015: The LAGRANTO Lagrangian analysis tool – version 2.0. Geosci. Model Dev., 8, 2569–2586, https://doi.org/10.5194/gmd-8-2569-2015.
Tsai, T. C., and J. P. Chen, 2020: Multimoment ice bulk microphysics scheme with consideration for particle shape and apparent density. Part I: Methodology and idealized simulation. J. Atmos. Sci., 77, 1821−1850, https://doi.org/10.1175/JAS-D-19-0125.1.
Tessendorf, S. A ., J. R. Frence, K. Friedrich, and Coauthors, 2019: A transformational approach to winter orographic weather modification research: The SNOWIE Project. Bull. Amer. Meteorol. Soc. 100(1), 71−92, https://doi.org/10.117 5/BAMS-D-17-0152.1.
Voigt, C., U. Schumann, A. Minikin, A. Abdelmonem, and Coauthors, 2017: ML-CIRRUS: The airborne experiment on natural cirrus and contrail cirrus with the high-altitude long-range research aircraft HALO. Bull. Amer. Meteor. Soc, 98, 271−288, https://doi.org/10.1175/BAMS-D-15-00213.1.
Wang, J. Y., X. Q. Dong, and B. K. Xi, 2015: Investigation of ice cloud microphysical properties of DCSs using aircraft in situ measurements during MC3E over the ARM SGP site. J. Geophys. Res.: Atmos., 120, 3533−3552, https://doi.org/10.1002/2014JD022795.
Wang, J. Y., and Coauthors, 2021: Impact of a new cloud microphysics parameterization on the simulations of mesoscale convective systems in E3SM. Journal of Advances in Modeling Earth Systems, 13, e2021MS002628. https://doi.org/10.1029/2021MS002628.
Yang, J. F., and H. C. Lei, 2022: Idealized numerical simulation experiment of ice seeding in convective clouds using a bin microphysics scheme. Atmospheric and Oceanic Science Letters, 15, 100258. https://doi.org/10.1016/j.aosl.2022.100258.
Yang, Y., and Coauthors, 2019: Toward understanding the process-level impacts of aerosols on microphysical properties of shallow cumulus cloud using aircraft observations. Atmospheric Research, 221, 27−33, https://doi.org/10.1016/j.atmosres.2019.01.027.
Yin, L., F. Ping, and J. H. Mao, 2017: A comparative study between bulk and bin microphysical schemes of a simulated squall line in East China. Atmospheric Science Letters, 18, 195−206, https://doi.org/10.1002/asl.742.