Ackerman, S. A., K. I. Strabala, W. P. Menzel, R. A. Frey, C. C. Moeller, and L. E. Gumley, 1998: Discriminating clear sky from clouds with MODIS. J. Geophys. Res., 103 , 32 141−32 157, https://doi.org/10.1029/1998JD200032.
Arulampalam, M. S., S. Maskell, N. Gordon, and T. Clapp, 2002: A tutorial on particle filters for online nonlinear/non-Gaussian Bayesian tracking. IEEE Transactions on Signal Processing, 50, 174−188, https://doi.org/10.1109/78.978374.
Auligné, T., 2014a: Multivariate minimum residual method for cloud retrieval. Part I: Theoretical aspects and simulated observation experiments. Mon. Wea. Rev., 142, 4383−4398, https://doi.org/10.1175/MWR-D-13-00172.1.
Auligné, T., 2014b: Multivariate minimum residual method for cloud retrieval. Part II: Real observations experiments. Mon. Wea. Rev., 142, 4399−4415, https://doi.org/10.1175/MWR-D-13-00173.1.
Barker, D., and Coauthors, 2012: The weather research and forecasting model’s community variational/ensemble data assimilation system: WRFDA. Bull. Amer. Meteor. Soc., 93, 831−843, https://doi.org/10.1175/BAMS-D-11-00167.1.
Bauer, P., E. Moreau, F. Chevallier, and U. O'keeffe, 2006: Multiple-scattering microwave radiative transfer for data assimilation applications. Quart. J. Roy. Meteor. Soc., 132, 1259−1281, https://doi.org/10.1256/qj.05.153.
Bauer, P., A. J. Geer, P. Lopez, and D. Salmond, 2010: Direct 4D-Var assimilation of all-sky radiances. Part I: Implementation. Quart. J. Roy. Meteor. Soc., 136, 1868−1885, https://doi.org/10.1002/qj.659.
Chen, N., W. Li, C. Gatebe, T. Tanikawa, M. Hori, R. Shimada, T. Aoki, and K. Stamnes, 2018: New neural network cloud mask algorithm based on radiative transfer simulations. Remote Sens. Environ., 219, 62−71, https://doi.org/10.1016/j.rse.2018.09.029.
Derber, J. C., and W. S. Wu, 1998: The use of TOVS cloud-cleared radiances in the NCEP SSI analysis system. Mon. Wea. Rev., 126, 2287−2299, https://doi.org/10.1175/1520-0493(1998)126<2287:TUOTCC>2.0.CO;2.
Doucet, A., N. Freitas, and N. Gordon, 2001: Sequential Monte Carlo Methods in Practice. Springer-Verlag, 3−14, https://doi.org/10.1007/978-1-4757-3437-9.
Dudhia, J., 1989: Numerical study of convection observed during the Winter Monsoon Experiment using a mesoscale two-dimensional model. J. Atmos. Sci., 46, 3077−3107, https://doi.org/10.1175/1520-0469(1989)046<3077:NSOCOD>2.0.CO;2.
Feng, J., X. G. Wang, and J. Poterjoy, 2020: A comparison of two local moment-matching nonlinear filters: Local particle filter (LPF) and local nonlinear ensemble transform filter (LNETF). Mon. Wea. Rev., 148, 4377−4395, https://doi.org/10.1175/MWR-D-19-0368.1.
Gao, B. C., P. Yang, and R. R. Li, 2003: Detection of high clouds in polar regions during the daytime using the MODIS 1.375-μm channel. IEEE Trans. Geosci. Remote Sens., 41, 474−481, https://doi.org/10.1109/TGRS.2002.808290.
Geer, A. J., and P. Bauer, 2011: Observation errors in all-sky data assimilation. Quart. J. Roy. Meteor. Soc., 137, 2024−2037, https://doi.org/10.1002/qj.830.
Geer, A. J., and Coauthors, 2018: All-sky satellite data assimilation at operational weather forecasting centres. Quart. J. Roy. Meteor. Soc., 144, 1191−1217, https://doi.org/10.1002/qj.3202.
Geng, X. W., J. Z. Min, C. Yang, Y. B. Wang, and D. M. Xu, 2020: Analysis of FY-4A AGRI radiance data bias characteristics and a correction experiment. Chinese Journal of Atmospheric Sciences, 44, 679−694, https://doi.org/10.3878/j.issn.1006-9895.1907.18254.
Grell, G. A., and S. R. Freitas, 2014: A scale and aerosol aware stochastic convective parameterization for weather and air quality modeling. Atmospheric Chemistry and Physics, 14, 5233−5250, https://doi.org/10.5194/acp-14-5233-2014.
Harris, B. A., and G. Kelly, 2001: A satellite radiance-bias correction scheme for data assimilation. Quart. J. Roy. Meteor. Soc., 127, 1453−1468, https://doi.org/ 10.1002/qj.49712757418.
Honda, T., and Coauthors, 2018: Assimilating all-sky Himawari-8 satellite infrared radiances: a case of Typhoon Soudelor (2015). Mon. Wea. Rev., 146, 213−229, https://doi.org/10.1175/MWR-D-16-0357.1.
Hong, S. Y., Y. Noh, and J. Dudhia, 2006: A new vertical diffusion package with an explicit treatment of entrainment processes. Mon. Wea. Rev., 134, 2318−2341, https://doi.org/10.1175/MWR3199.1.
Hoppel, K. W., S. D. Eckermann, L. Coy, G. E. Nedoluha, D. R. Allen, S. D. Swadley, and N. L. Baker, 2013: Evaluation of SSMIS upper atmosphere sounding channels for high-altitude data assimilation. Mon. Wea. Rev., 141, 3314−3330, https://doi.org/10.1175/MWR-D-13-00003.1.
Hu, Y. H., Y. Zhang, L. Yan, X. M. Li, C. Y. Dou, G. S. Jia, Y. D. Si, and L. J. Zhang, 2021: Evaluation of the radiometric calibration of FY4A-AGRI thermal infrared data using Lake Qinghai. IEEE Trans. Geosci. Remote Sens., 59, 8040−8050, https://doi.org/10.1109/TGRS.2020.3037828.
Huang, H. L., W. L. Smith, J. Li, P. Antonelli, X. Q. Wu, R. O. Knuteson, B. Huang, and B. J. Osborne, 2004: Minimum local emissivity variance retrieval of cloud altitude and effective spectral emissivity-simulation and initial verification. J. Appl. Meteorol. Climatol., 43, 795−809, https://doi.org/10.1175/2090.1.
Jones, T. A., X. G. Wang, P. Skinner, A. Johnson, and Y. M. Wang, 2018: Assimilation of GOES-13 imager clear-sky water vapor (6.5 μm) radiances into a warn-on-forecast system. Mon. Wea. Rev., 146, 1077−1107, https://doi.org/10.1175/MWR-D-17-0280.1.
Kotecha, J. H., P. M. Djuric, 2003: Gaussian Particle Filtering. IEEE Trans on Signal Processing, 51 , 2592−2601, https://doi.org/10.1109/TSP.2003.816758.
Karlsson, K. G., E. Johansson, and A. Devasthale, 2015: Advancing the uncertainty characterisation of cloud masking in passive satellite imagery: Probabilistic formulations for NOAA AVHRR data. Remote Sensing of Environment, 158, 126−139, https://doi.org/10.1016/j.rse.2014.10.028.
Kazumori, M., 2014: Satellite radiance assimilation in the JMA operational mesoscale 4DVAR system. Mon. Wea. Rev., 142, 1361−1381, https://doi.org/10.1175/MWR-D-13-00 135.1.
Kim, Y. J., W. F. Campbell, and S. D. Swadley, 2010: Reduction of middle-atmospheric forecast bias through improvement in satellite radiance quality control. Wea. Forecasting, 25, 681−700, https://doi.org/10.1175/2009WAF2222329.1.
Li, J., A. J. Geer, K. Okamoto, J. A. Otkin, Z. Q. Liu, W. Han, and P. Wang, 2022a: Satellite all-sky infrared radiance assimilation: Recent progress and future perspectives. Adv. Atmos. Sci., 39, 9−21, https://doi.org/10.1007/s00376-021-1088-9.
Li, X., X. L. Zou, M. J. Zeng, X. Y. Zhuge, and N. Wang, 2022b: Characteristic differences of CrIS all-sky simulations of brightness temperature with different microphysics parameterization schemes. Mon. Wea. Rev., 150, 2629−2657, https://doi.org/10.1175/MWR-D-22-0024.1.
Lim, K. S. S., and S. Y. Hong, 2010: Development of an effective double-moment cloud microphysics scheme with prognostic cloud condensation nuclei (CCN) for weather and climate models. Mon. Wea. Rev., 138, 1587−1612, https://doi.org/10.1175/2009MWR2968.1.
Liu, Z. Q., J. M. Ban, J. S. Hong, and Y. H. Kuo, 2020: Multi-resolution incremental 4D-Var for WRF: Implementation and application at convective scale. Quart. J. Roy. Meteor. Soc., 146, 3661−3674, https://doi.org/10.1002/qj.3865.
Lorenc, A. C., and Coauthors, 2000: The Met. Office global three-dimensional variational data assimilation scheme. Quart. J. Roy. Meteor. Soc., 126, 2991−3012, https://doi.org/10.1002/qj.49712657002.
McNally, A. P., 2002: A note on the occurrence of cloud in meteorologically sensitive areas and the implications for advanced infrared sounders. Quart. J. Roy. Meteor. Soc., 128, 2551−2556, https://doi.org/10.1256/qj.01.206.
McNally, A. P., and P. D. Watts, 2003: A cloud detection algorithm for high-spectral-resolution infrared sounders. Quart. J. Roy. Meteor. Soc., 129, 3411−3423, https://doi.org/10.1256/qj.02.208.
Mesinger, F., and T. L. Black, 1992: On the impact on forecast accuracy of the step-mountain (eta) vs. sigma coordinate. Meteorol. Atmos. Phys., 50, 47−60, https://doi.org/10.1007/BF01025504.
Min, M., and Coauthors, 2017: Developing the science product algorithm testbed for Chinese next-generation geostationary meteorological satellites: Fengyun-4 series. Journal of Meteorological Research, 31 (4), 708−719, https://doi.org/10.1007/s13351-017-6161-z.
Minamide, M., and F. Q. Zhang, 2018: Assimilation of all-sky infrared radiances from Himawari-8 and impacts of moisture and hydrometer initialization on convection-permitting tropical cyclone prediction. Mon. Wea. Rev., 146, 3241−3258, https://doi.org/10.1175/MWR-D-17-0367.1.
Mlawer, E. J., S. J. Taubman, P. D. Brown, M. J. Iacono, and S. A. Clough, 1997: Radiative transfer for inhomogeneous atmospheres: RRTM, a validated correlated-k model for the longwave. J. Geophys. Res., 102 , 16 663−16 682, https://doi.org/10.1029/97JD00237.
Niu, Z. Y., P. Kumar, and L. W. Wang, 2023: Impacts of assimilating FY-4A AGRI clear-sky water vapor radiance on short-range weather prediction during indian summer monsoon. Int. J. Remote Sens., 44, 3679−3699, https://doi.org/10.108 0/01431161.2023.2225709.
Okamoto, K., A. P. McNally, and W. Bell, 2014: Progress towards the assimilation of all-sky infrared radiances: An evaluation of cloud effects. Quart. J. Roy. Meteor. Soc., 140, 1603−1614, https://doi.org/10.1002/qj.2242.
Otkin, J. A., and R. Potthast, 2019: Assimilation of All-Sky SEVIRI infrared brightness temperatures in a regional-scale ensemble data assimilation system. Mon. Wea. Rev., 147 (12), 4481−4509, https://doi.org/10.1175/MWR-D-19-0133.1.
Parrish, D. F., and J. C. Derber, 1992: The national meteorological center’s spectral statistical-interpolation analysis system. Mon. Wea. Rev., 120, 1747−1763, https://doi.org/10.1175/1520-0493(1992)120<1747:TNMCSS>2.0.CO;2.
Pielke, R. A. Jr., and C. W. Landsea, 1998: Normalized hurricane damages in the United States: 1925-95. Wea. Forecasting, 13, 621−631, https://doi.org/10.1175/1520-0434(1998)013<0621:NHDITU>2.0.CO;2.
Poterjoy, J., 2016: A localized particle filter for high-dimensional nonlinear systems. Mon. Wea. Rev., 144, 59−76, https://doi.org/10.1175/MWR-D-15-0163.1.
Saunders, R., and Coauthors, 2018: An update on the RTTOV fast radiative transfer model (currently at version 12). Geoscientific Model Development, 11, 2717−2737, https://doi.org/10.5194/gmd-11-2717-2018.
Schwartz, C. S., Z. Q. Liu, X.-Y. Huang, Y.-H. Kuo, and C.-T. Fong, 2013: Comparing limited-area 3DVAR and Hybrid variational-ensemble data assimilation methods for typhoon track forecasts: Sensitivity to outer loops and vortex relocation. Mon. Wea. Rev., 141, 4350−4372, https://doi.org/10.1175/MWR-D-13-00028.1.
Shen, F. F., and J. Z. Min, 2015: Assimilating AMSU-A radiance data with the WRF Hybrid En3DVAR system for track predictions of Typhoon Megi (2010). Adv. Atmos. Sci., 32, 1231−1243, https://doi.org/10.1007/s00376-014-4239-4.
Shen, F. F., A. Q. Shu, H. Li, D. M. Xu, and J. Z. Min, 2021a: Assimilation of Himawari-8 imager radiance data with the WRF-3DVAR system for the prediction of Typhoon Soudelor. Natural Hazards and Earth System Sciences, 21, 1569−1582, https://doi.org/10.5194/nhess-21-1569-2021.
Shen, F. F., D. M. Xu, H. Li, J. Z. Min, and R. X. Liu, 2021b: Assimilation of GPM Microwave Imager Radiance data with the WRF hybrid 3DEnVar system for the prediction of Typhoon Chan-hom (2015). Atmospheric Research, 251, 105422, https://doi.org/10.1016/j.atmosres.2020.105422.
Shi, Q., J. Tang, Y. M. Shen, and Y. X. Ma, 2021: Numerical investigation of ocean waves generated by three typhoons in offshore China. Acta Oceanologica Sinica, 40 (12), 125−134, https://doi.org/10.1007/s13131-021-1868-1.
Skamarock, W. C., and Coauthors, 2021: A description of the advanced research WRF model version 4.3. No. NCAR/TN-556+STR, https://doi.org/10.5065/1dfh-6p97.
Smith, W. L., and R. Frey, 1990: On cloud altitude determinations from high resolution interferometer sounder (HIS) observations. J. Appl. Meteorol. Climatol., 29, 658−662, https://doi.org/10.1175/1520-0450(1990)029<0658:OCADFH>2.0.CO;2.
Song, L. X., F. F. Shen, C. L. Shao, A. Q. Shu, and L. J. Zhu, 2022: Impacts of 3DEnVar-based FY-3D MWHS-2 radiance assimilation on numerical simulations of landfalling typhoon ampil (2018). Remote Sensing, 14 (23), 6037, https://doi.org/10.3390/rs14236037.
Sun, S., C. X. Shi, Y. Pan, L. Bai, B. Xu, T. Zhang, S. Han, and L. P. Jiang, 2020: Applicability assessment of the 1998-2018 CLDAS multi-source precipitation fusion dataset over China. Journal of Meteorological Research, 34, 879−892, https://doi.org/10.1007/s13351-020-9101-2.
Tang, F., X. Y. Zhuge, M. J. Zeng, X. Li, P. M. Dong, and Y. Han, 2021: Applications of the advanced radiative transfer modeling system (ARMS) to characterize the performance of Fengyun–4A/AGRI. Remote Sensing, 13, 3120, https://doi.org/10.3390/rs13163120.
Van Leeuwen, P. J., 2010: Nonlinear data assimilation in geosciences: An extremely efficient particle filter. Quart. J. Roy. Meteor. Soc., 136, 1991−1999, https://doi.org/10.1002/qj.699.
Wang, G., K. F. Wang, W. Han, D. Y. Wang, and X. X. Qiu, 2020: Typhoon Maria precipitation retrieval and evolution based on the infrared brightness temperature of the Feng-Yun 4A/advanced geosynchronous radiation imager. Advances in Meteorology, 2020, 4245037, https://doi.org/10.1155/2020/4245037.
Wang, X., M. Min, F. Wang, J. P. Guo, B. Li, and S. H. Tang, 2019: Intercomparisons of cloud mask products among Fengyun-4A, Himawari-8, and MODIS. IEEE Trans. Geosci. Remote Sens., 57, 8827−8839, https://doi.org/10.1109/TGRS.2019.2923247.
Wang, Y. B., Z. Q. Liu, S. Yang, J. Z. Min, L. Q. Chen, Y. D. Chen, and T. Zhang, 2018: Added value of assimilating Himawari-8 AHI water vapor radiances on analyses and forecasts for "7.19" severe storm over North China. J. Geophys. Res., 123, 3374−3394, https://doi.org/10.1002/2017JD0 27697.
Wu, W.-S., R. J. Purser, and D. F. Parrish, 2002: Three-dimensional variational analysis with spatially inhomogeneous covariances. Mon. Wea. Rev., 130, 2905−2916, https://doi.org/10.1175/1520-0493(2002)130<2905:TDVAWS>2.0.CO;2.
Xian, Z. P., K. Y. Chen, and J. Zhu, 2019: All-sky assimilation of the MWHS-2 observations and evaluation the impacts on the analyses and forecasts of binary typhoons. J. Geophys. Res., 124, 6359−6378, https://doi.org/10.1029/2018JD029658.
Xu, D.-M., X.-Y. Huang, Z.-Q. Liu, and J.-Z. Min, 2014: Comparisons of two cloud-detection schemes for infrared radiance observations. Atmos. Ocean. Sci. Lett., 7, 358−363, https://doi.org/10.3878/j.issn.1674-2834.14.0016.
Xu, D. M., T. Auligné, and X.-Y. Huang, 2015: A Validation of the multivariate and minimum residual method for cloud retrieval using radiance from multiple satellites. Adv. Atmos. Sci., 32, 349−362, https://doi.org/10.1007/s00376-014-32 58-5.
Xu, D. M., T. Auligné, G. Descombes, and C. Snyder, 2016: A method for retrieving clouds with satellite infrared radiances using the particle filter. Geoscientific Model Development, 9, 3919−3932, https://doi.org/10.5194/gmd-9-3919-2016.
Xu, D. M., Z. Q. Liu, S. Y. Fan, M. Chen, and F. F. Shen, 2021: Assimilating all-sky infrared radiances from Himawari-8 using the 3DVar method for the prediction of a severe storm over North China. Adv. Atmos. Sci., 38, 661−676, https://doi.org/10.1007/s00376-020-0219-z.
Xu, L., W. Cheng, Z. R. Deng, J. J. Liu, B. Wang, B. Lu, S. D. Wang, and L. Dong, 2023: Assimilation of the FY-4A AGRI clear-sky radiance data in a regional numerical model and its impact on the forecast of the “21·7” Henan extremely persistent heavy rainfall. Adv. Atmos. Sci., 40, 920−936, https://doi.org/10.1007/s00376-022-1380-3.
Xu, M. T., H. Li, J. Y. Luo, H. R. Ben, and Y. J. Zhu, 2022: Predictability and dynamics of the rapid intensification of Super Typhoon Lekima (2019). Frontiers of Earth Science, 16, 132−143, https://doi.org/10.1007/s11707-021-0877-x.
Yang, C., Z. Q. Liu, J. Bresch, S. R. H. Rizvi, X.-Y. Huang, and J. Z. Min, 2016: AMSR2 all-sky radiance assimilation and its impact on the analysis and forecast of Hurricane Sandy with a limited-area data assimilation system. Tellus A, 68, 30917, https://doi.org/10.3402/tellusa.v68.30917.
Yang, J., Z. Q. Zhang, C. Y. Wei, F. Lu, and Q. Guo, 2017: Introducing the new generation of Chinese geostationary weather satellites, Fengyun-4. Bull. Amer. Meteor. Soc., 98, 1637−1658, https://doi.org/10.1175/BAMS-D-16-0065.1.
Yin, R. Y., W. Han, Z. Q. Gao, and J. Li, 2021: Impact of high temporal resolution FY-4A Geostationary Interferometric Infrared Sounder (GIIRS) radiance measurements on Typhoon forecasts: Maria (2018) case with GRAPES global 4D-Var assimilation system. Geophys. Res. Lett., 48, e2021GL093672, https://doi.org/10.1029/2021GL093672.
Ying, M., W. Zhang, H. Yu, X. Q. Lu, J. X. Feng, Y. X. Fan, Y. T. Zhu, and D. Q. Chen, 2014: An overview of the China Meteorological Administration tropical cyclone database. J. Atmos. Oceanic Technol., 31, 287−301, https://doi.org/10.1175/JTECH-D-12-00119.1.
Yu, T. L., G. Ma, F. Lu, X. H. Zhang, and P. Zhang, 2021: Quality scoring of the Fengyun 4A clear sky radiance product. Remote Sensing, 13, 3658, https://doi.org/10.3390/rs13183658.
Zhang, F. Q., M. Minamide, and E. E. Clothiaux, 2016: Potential impacts of assimilating all-sky infrared satellite radiances from GOES-R on convection-permitting analysis and prediction of tropical cyclones. Geophys. Res. Lett., 43, 2954−2963, https://doi.org/10.1002/2016GL068468.
Zhang, P., L. Chen, D. Xian, and Z. Xu, 2018: Recent progress of Fengyun meteorology satellites. Chinese Journal of Space Science, 38, 788−796, https://doi.org/10.11728/cjss2018.05.788.
Zhang, P., and Coauthors, 2019: Latest progress of the Chinese meteorological satellite program and core data processing technologies. Adv. Atmos. Sci., 36, 1027−1045, https://doi.org/10.1007/s00376-019-8215-x.
Zhang, P., Z. Xu, M. Guan, L. Z. Xie, D. Xian, and C. Liu, 2022a: Progress of fengyun meteorological satellites since 2020. Chinese Journal of Space Science, 42, 724−732, https://doi.org/10.11728/cjss2022.04.yg14.
Zhang, Y., J. Li, Z. L. Li, J. Zheng, D. Q. Wu, and H. Y. Zhao, 2022b: FENGYUN-4A advanced geosynchronous radiation imager layered precipitable water vapor products’ comprehensive evaluation based on quality control system. Atmosphere, 13, 290, https://doi.org/10.3390/atmos13020290.
Zhang, Y. J., E. E. Clothiaux, and D. J. Stensrud, 2022c: Correlation structures between satellite all-sky infrared brightness temperatures and the atmospheric state at storm scales. Adv. Atmos. Sci., 39, 714−732, https://doi.org/10.1007/s00376-021-0352-3.
Zhou, W., J. H. Li, F. H. Xu, Y. Q. Shu, and Y. Feng, 2021: The impact of ocean data assimilation on seasonal predictions based on the National Climate Center climate system model. Acta Oceanologica Sinica, 40 (5), 58−70, https://doi.org/10.1007/s13131-021-1732-3.
Zhu, J., J. Shu, and W. Guo, 2020: Biases characteristics assessment of the Advanced Geosynchronous Radiation Imager (AGRI) measurement on board Fengyun–4A geostationary satellite. Remote Sensing, 12, 2871, https://doi.org/10.3390/rs12182871.
Zhu, K. F., M. Xue, Y. J. Pan, M. Hu, S. G. Benjamin, S. S. Weygandt, and H. D. Lin, 2019: The impact of satellite radiance data assimilation within a frequently updated regional forecast system using a GSI-based ensemble Kalman filter. Adv. Atmos. Sci., 36, 1308−1326, https://doi.org/10.1007/s00376-019-9011-3.
Zhu, L., Z. Y. Meng, Y. H. Weng, and F. Q. Zhang, 2022: Assimilation of all-sky geostationary satellite infrared radiances for convection-permitting initialization and prediction of Hurricane Joaquin (2015). Adv. Atmos. Sci., 39, 1859−1872, https://doi.org/10.1007/s00376-022-2015-4.
Zou, X., Z. Qin, and Y. Zheng, 2015: Improved tropical storm forecasts with GOES-13/15 imager radiance assimilation and asymmetric vortex initialization in HWRF. Mon. Wea. Rev., 143, 2485−2505, https://doi.org/ 10.1175/MWR-D-14-00223.1.