Albrecht, B., M. Fang, and V. Ghate, 2016: Exploring stratocumulus cloud-top entrainment processes and parameterizations by using Doppler cloud radar observations. J. Atmos. Sci., 73, 729−742, https://doi.org/10.1175/JAS-D-15-0147.1.
Albrecht, B. A., 1989: Aerosols, cloud microphysics, and fractional cloudiness. Science, 245, 1227−1230, https://doi.org/10.1126/science.245.4923.1227.
Albrecht, B. A., C. S. Bretherton, D. Johnson, W. H. Scubert, and A. S. Frisch, 1995: The Atlantic stratocumulus transition experiment—ASTEX. Bull. Amer. Meteor. Soc., 76, 889−904, https://doi.org/10.1175/1520-0477(1995)076<0889:TASTE>2.0.CO;2.
Bai, H. M., C. Gong, M. H. Wang, Z. B. Zhang, and T. L'Ecuyer, 2018: Estimating precipitation susceptibility in warm marine clouds using multi-sensor aerosol and cloud products from A-Train satellites. Atmospheric Chemistry and Physics, 18, 1763−1783, https://doi.org/10.5194/acp-18-1763-2018.
Bellouin, N., and Coauthors, 2020: Bounding global aerosol radiative forcing of climate change. Rev. Geophys., 58, e2019RG000660, https://doi.org/10.1029/2019RG000660.
Beswick, K. M., M. W. Gallagher, A. R. Webb, E. G. Norton, and F. Perry, 2008: Application of the Aventech AIMMS20AQ airborne probe for turbulence measurements during the Convective Storm Initiation Project. Atmospheric Chemistry and Physics, 8, 5449−5463, https://doi.org/10.5194/acp-8-5449-2008.
Bony, S., and J.-L. Dufresne, 2005: Marine boundary layer clouds at the heart of tropical cloud feedback uncertainties in climate models. Geophys. Res. Lett., 32, L20806, https://doi.org/10.1029/2005GL023851.
Bretherton, C. S., and M. C. Wyant, 1997: Moisture transport, lower-Tropospheric stability, and decoupling of cloud-topped boundary layers. J. Atmos. Sci., 54, 148−167, https://doi.org/10.1175/1520-0469(1997)054<0148:MTLTSA>2.0.CO;2.
Bretherton, C. S., and P. N. Blossey, 2014: Low cloud reduction in a greenhouse-warmed climate: Results from Lagrangian LES of a subtropical marine cloudiness transition. Journal of Advances in Modeling Earth Systems, 6, 91−114, https://doi.org/10.1002/2013MS000250.
Bretherton, C. S., and Coauthors, 2004: The Epic 2001 Stratocumulus Study. Bull. Amer. Meteor. Soc., 85, 967−978, https://doi.org/10.1175/BAMS-85-7-967.
Brost, R. A., J. C. Wyngaard, and D. H. Lenschow, 1982: Marine stratocumulus layers. Part II: Turbulence budgets. J. Atmos. Sci., 39, 818−836, https://doi.org/10.1175/1520-0469(1982)039<0818:MSLPIT>2.0.CO;2.
Carslaw, K. S., and Coauthors, 2013: Large contribution of natural aerosols to uncertainty in indirect forcing. Nature, 503, 67−71, https://doi.org/10.1038/nature12674.
Chen, Y.-C., M. W. Christensen, G. L. Stephens, and J. H. Seinfeld, 2014: Satellite-based estimate of global aerosol–cloud radiative forcing by marine warm clouds. Nature Geoscience, 7, 643−646, https://doi.org/10.1038/ngeo2214.
Diamond, M. S., and Coauthors, 2018: Time-dependent entrainment of smoke presents an observational challenge for assessing aerosol–cloud interactions over the southeast Atlantic Ocean. Atmospheric Chemistry and Physics, 18, 14 623−14 636,
Dong, X., B. Xi, A. Kennedy, P. Minnis, and R. Wood, 2014: A 19-month record of marine aerosol–cloud–radiation properties derived from DOE ARM mobile facility deployment at the Azores. Part I: Cloud fraction and single-layered MBL cloud properties. J. Climate, 27, 3665−3682, https://doi.org/10.1175/JCLI-D-13-00553.1.
Dong, X. Q., A. C. Schwantes, B. K. Xi, and P. Wu, 2015: Investigation of the marine boundary layer cloud and CCN properties under coupled and decoupled conditions over the Azores. J. Geophys. Res. Atmos., 120, 6179−6191, https://doi.org/10.1002/2014JD022939.
Dong, X. Q., P. Wu, Y. Wang, B. K. Xi, and Y. Y. Huang, 2021: New observational constraints on warm rain processes and their climate implications. Geophys. Res. Lett., 48, e2020GL091836, https://doi.org/10.1029/2020GL091836.
Duong, H. T., A. Sorooshian, and G. Feingold, 2011: Investigating potential biases in observed and modeled metrics of aerosol-cloud-precipitation interactions. Atmospheric Chemistry and Physics, 11, 4027−4037, https://doi.org/10.5194/acp-11-4027-2011.
Faloona, I., and Coauthors, 2005: Observations of entrainment in eastern Pacific marine stratocumulus using three conserved scalars. J. Atmos. Sci., 62, 3268−3285, https://doi.org/10.1175/JAS3541.1.
Feingold, G., W. R. Cotton, B. Stevens, and A. S. Frisch, 1996a: The relationship between drop in-cloud residence time and drizzle production in numerically simulated stratocumulus clouds. J. Atmos. Sci., 53, 1108−1122, https://doi.org/10.1175/1520-0469(1996)053<1108:TRBDIC>2.0.CO;2.
Feingold, G., S. M. Kreidenweis, B. Stevens, and W. R. Cotton, 1996b: Numerical simulations of stratocumulus processing of cloud condensation nuclei through collision-coalescence. J. Geophys. Res. Atmos., 101, 21 391−21 402,
Feingold, G., A. S. Frisch, B. Stevens, and W. R. Cotton, 1999: On the relationship among cloud turbulence, droplet formation and drizzle as viewed by Doppler radar, microwave radiometer and lidar. J. Geophys. Res. Atmos., 104, 22 195−22 203,
Feingold, G., L. A. Remer, J. Ramaprasad, and Y. J. Kaufman, 2001: Analysis of smoke impact on clouds in Brazilian biomass burning regions: An extension of Twomey's approach. J. Geophys. Res. Atmos., 106, 22 907−22 922,
Feingold, G., W. L. Eberhard, D. E. Veron, and M. Previdi, 2003: First measurements of the Twomey indirect effect using ground-based remote sensors. Geophys. Res. Lett., 30, 1287, https://doi.org/10.1029/2002GL016633.
Frisch, A. S., C. W. Fairall, and J. B. Snider, 1995: Measurement of stratus cloud and drizzle parameters in ASTEX with a Kα-band Doppler radar and a microwave radiometer. J. Atmos. Sci., 52, 2788−2799, https://doi.org/10.1175/1520-0469(1995)052<2788:MOSCAD>2.0.CO;2.
Gao, S. N., C. S. Lu, Y. G. Liu, F. Mei, J. Wang, L. Zhu, and S. Q. Yan, 2020: Contrasting scale dependence of entrainment-mixing mechanisms in stratocumulus clouds. Geophys. Res. Lett., 47, e2020GL086970, https://doi.org/10.1029/2020GL086970.
Garratt, J. R., 1994: Review: The atmospheric boundary layer. Earth-Science Reviews, 37, 89−134, https://doi.org/10.1016/0012-8252(94)90026-4.
Gerber, H., and G. Frick, 2012: Drizzle rates and large sea-salt nuclei in small cumulus. J. Geophys. Res. Atmos., 117, D01205, https://doi.org/10.1029/2011JD016249.
Glienke, S., and F. Mei, 2019: Two-dimensional stereo (2D-S) probe instrument handbook, DOE/SC-ARM-TR-233, Available from: https://www.arm.gov/publications/tech_reports/handbooks/doe-sc-arm-tr-233.pdf.
Glienke, S., and F. Mei, 2020: Fast cloud droplet probe (FCDP) instrument handbook, DOE/SC-ARM-TR-238, Available from: https://www.arm.gov/publications/tech_reports/handbooks/doe-sc-arm-tr-238.pdf.
Goldberger, L., 2020: Passive cavity aerosol spectrometer probe aboard aircraft (PCASP-AIR) with signal processing package 200 instrument handbook, DOE/SC-ARM-TR-241, Available from: https://www.arm.gov/publications/tech_reports/handbooks/doe-sc-arm-tr-241.pdf.
Grosvenor, D. P., and Coauthors, 2018: Remote sensing of droplet number concentration in warm clouds: A review of the current state of knowledge and perspectives. Rev. Geophys., 56, 409−453, https://doi.org/10.1029/2017RG000593.
Gupta, S., G. M. McFarquhar, J. R. O'Brien, M. R. Poellot, D. J. Delene, R. M. Miller, and J. D. S. Griswold, 2022: Factors affecting precipitation formation and precipitation susceptibility of marine stratocumulus with variable above- and below-cloud aerosol concentrations over the Southeast Atlantic. Atmospheric Chemistry and Physics, 22, 2769−2793, https://doi.org/10.5194/acp-22-2769-2022.
Haman, K. E., S. P. Malinowski, M. J. Kurowski, H. Gerber, and J.-L. Brenguier, 2007: Small scale mixing processes at the top of a marine stratocumulus-a case study. Quart. J. Roy. Meteor. Soc., 133, 213−226, https://doi.org/10.1002/qj.5.
Hill, A. A., G. Feingold, and H. L. Jiang, 2009: The influence of entrainment and mixing assumption on aerosol–cloud interactions in marine stratocumulus. J. Atmos. Sci., 66, 1450−1464, https://doi.org/10.1175/2008JAS2909.1.
Hudson, J. G., and P. R. Frisbie, 1991: Cloud condensation nuclei near marine stratus. J. Geophys. Res. Atmos., 96, 20 795−20 808,
Hudson, J. G., V. Jha, and S. Noble, 2011: Drizzle correlations with giant nuclei. Geophys. Res. Lett., 38, L05808, https://doi.org/10.1029/2010GL046207.
IPCC. Climate Change 2021: The Physical Science Basis. Contribution of Working Group I to The Sixth Assessment Report of the Intergovernmental Panel on Climate Change [Masson-Delmotte, V., et al., (eds.)]. Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA, doi:10.1017/9781009157896, in press.
Jia, H. L., J. Quaas, E. Gryspeerdt, C. Böhm, and O. Sourdeval, 2022: Addressing the difficulties in quantifying the Twomey effect for marine warm clouds from multi-sensor satellite observations and reanalysis. Atmospheric Chemistry and Physics Discussions, 2022, 1−26,
Jung, E., B. A. Albrecht, A. Sorooshian, P. Zuidema, and H. H. Jonsson, 2016: Precipitation susceptibility in marine stratocumulus and shallow cumulus from airborne measurements. Atmospheric Chemistry and Physics, 16, 11 395−11 413,
Kuang, C., and F. Mei, 2020: Condensation Particle Counter (CPC) Instrument Handbook – Airborne Version, DOE/SC-ARM-TR-227, Available from: https://www.arm.gov/publications/tech_reports/handbooks/doe-sc-arm-tr-227.pdf.
Lawson, R. P., D. O’Connor, P. Zmarzly, K. Weaver, B. Baker, Q. X. Mo, and H. Jonsson, 2006: The 2D-S (Stereo) probe: Design and preliminary tests of a new airborne, high-speed, high-resolution particle imaging probe. J. Atmos. Oceanic Technol., 23, 1462−1477, https://doi.org/10.1175/JTECH1927.1.
Lehmann, K., H. Siebert, and R. A. Shaw, 2009: Homogeneous and inhomogeneous mixing in cumulus clouds: Dependence on local turbulence structure. J. Atmos. Sci., 66, 3641−3659, https://doi.org/10.1175/2009JAS3012.1.
Lilly, D. K., 1968: Models of cloud-topped mixed layers under a strong inversion. Quart. J. Roy. Meteor. Soc., 94, 292−309, https://doi.org/10.1002/qj.49709440106.
Logan, T., B. K. Xi, and X. Q. Dong, 2014: Aerosol properties and their influences on marine boundary layer cloud condensation nuclei at the ARM mobile facility over the Azores. J. Geophys. Res. Atmos., 119, 4859−4872, https://doi.org/10.1002/2013JD021288.
Lu, M.-L., W. C. Conant, H. H. Jonsson, V. Varutbangkul, R. C. Flagan, and J. H. Seinfeld, 2007: The marine stratus/stratocumulus experiment (MASE): Aerosol-cloud relationships in marine stratocumulus. J. Geophys. Res. Atmos., 112, D10209, https://doi.org/10.1029/2006JD007985.
Lu, M.-L., A. Sorooshian, H. H. Jonsson, G. Feingold, R. C. Flagan, and J. H. Seinfeld, 2009: Marine stratocumulus aerosol-cloud relationships in the MASE-II experiment: Precipitation susceptibility in eastern Pacific marine stratocumulus. J. Geophys. Res. Atmos., 114, D24203, https://doi.org/10.1029/2009JD012774.
Magaritz-Ronen, L., M. Pinsky, and A. Khain, 2016: Drizzle formation in stratocumulus clouds: Effects of turbulent mixing. Atmospheric Chemistry and Physics, 16, 1849−1862, https://doi.org/10.5194/acp-16-1849-2016.
Magaritz, L., M. Pinsky, O. Krasnov, and A. Khain, 2009: Investigation of droplet size distributions and drizzle formation using a new trajectory ensemble model. Part II: Lucky parcels. J. Atmos. Sci., 66, 781−805, https://doi.org/10.1175/2008JAS2789.1.
Mann, J. A. L., J. Christine Chiu, R. J. Hogan, E. J. O'Connor, T. S. L'Ecuyer, T. H. M. Stein, and A. Jefferson, 2014: Aerosol impacts on drizzle properties in warm clouds from ARM Mobile Facility maritime and continental deployments. J. Geophys. Res. Atmos., 119, 4136−4148, https://doi.org/10.1002/2013JD021339.
Martins, J. V., and Coauthors, 2011: Remote sensing the vertical profile of cloud droplet effective radius, thermodynamic phase, and temperature. Atmospheric Chemistry and Physics, 11, 9485−9501, https://doi.org/10.5194/acp-11-9485-2011.
McComiskey, A., and Coauthors, 2009: An assessment of aerosol-cloud interactions in marine stratus clouds based on surface remote sensing. J. Geophys. Res. Atmos., 114, D09203, https://doi.org/10.1029/2008JD011006.
NASA/LARC/SD/ASDC. 2018: SatCORPS CERES GEO Edition 4 meteosat-10 northern hemisphere version 1.2. Available from https://cmr.earthdata.nasa.gov/search/concepts/C1588128371-LARC_ASDC.html.
Nicholls, S., 1984: The dynamics of stratocumulus: Aircraft observations and comparisons with a mixed layer model. Quart. J. Roy. Meteor. Soc., 110, 783−820, https://doi.org/10.1002/qj.49711046603.
Nicholls, S., and J. Leighton, 1986: An observational study of the structure of stratiform cloud sheets: Part I. Structure. Quart. J. Roy. Meteor. Soc., 112, 431−460, https://doi.org/10.1002/qj.49711247209.
Nicholls, S., and J. D. Turton, 1986: An observational study of the structure of stratiform cloud sheets: Part II. Entrainment. Quart. J. Roy. Meteor. Soc., 112, 461−480, https://doi.org/10.1002/qj.49711247210.
Pandis, S. N., L. M. Russell, and J. H. Seinfeld, 1994: The relationship between DMS flux and CCN concentration in remote marine regions. J. Geophys. Res. Atmos., 99, 16 945−16 957,
Pandithurai, G., T. Takamura, J. Yamaguchi, K. Miyagi, T. Takano, Y. Ishizaka, S. Dipu, A. Shimizu, 2009: Aerosol effect on cloud droplet size as monitored from surface-based remote sensing over East China Sea region. Geophys. Res. Lett., 36, L13805, https://doi.org/10.1029/2009GL038451.
Pawlowska, H., J. L. Brenguier, and F. Burnet, 2000: Microphysical properties of stratocumulus clouds. Atmos. Res., 55, 15−33, https://doi.org/10.1016/S0169-8095(00)00054-5.
Pinsky, M. B., A. P. Khain, and M. Shapiro, 2007: Collisions of cloud droplets in a turbulent flow. Part IV: Droplet hydrodynamic interaction. J. Atmos. Sci., 64, 2462−2482, https://doi.org/10.1175/JAS3952.1.
Pruppacher, H. R., and J. D. Klett, 2010: Microphysics of Clouds and Precipitation. Springer, 954pp,
Quaas, J., and Coauthors, 2020: Constraining the Twomey effect from satellite observations: Issues and perspectives. Atmospheric Chemistry and Physics, 20, 15 079−15 099,
Redemann, J., and Coauthors, 2021: An overview of the ORACLES (ObseRvations of Aerosols above CLouds and their intEractionS) project: Aerosol–cloud–radiation interactions in the southeast Atlantic basin. Atmospheric Chemistry and Physics, 21, 1507−1563, https://doi.org/10.5194/acp-21-1507-2021.
Seinfeld, J. H., and S. N. Pandis, 2016: Atmospheric Chemistry and Physics: From Air Pollution to Climate Change. 3rd ed. John Wiley & Sons, 1152pp.
Siebert, H., and Coauthors, 2021: Observations of aerosol, cloud, turbulence, and radiation properties at the top of the marine boundary layer over the Eastern North Atlantic Ocean: The ACORES campaign. Bull. Amer. Meteor. Soc., 102, E123−E147, https://doi.org/10.1175/BAMS-D-19-0191.1.
Sorooshian, A., G. Feingold, M. D. Lebsock, H. L. Jiang, and G. L. Stephens, 2009: On the precipitation susceptibility of clouds to aerosol perturbations. Geophys. Res. Lett., 36, L13803, https://doi.org/10.1029/2009GL038993.
Terai, C. R., R. Wood, D. C. Leon, and P. Zuidema, 2012: Does precipitation susceptibility vary with increasing cloud thickness in marine stratocumulus. Atmospheric Chemistry and Physics, 12, 4567−4583, https://doi.org/10.5194/acp-12-4567-2012.
Twohy, C. H., and M. D. Petters, J. R. Snider, B. Stevens, W. Tahnk, M. Wetzel, L. Russell, F. Burnet, 2005: Evaluation of the aerosol indirect effect in marine stratocumulus clouds: Droplet number, size, liquid water path, and radiative impact. J. Geophys. Res. Atmos., 110, D08203, https://doi.org/10.1029/2004JD005116.
Twomey, S., 1977: The Influence of Pollution on the Shortwave Albedo of Clouds. J. Atmos. Sci., 34, 1149−1152, https://doi.org/10.1175/1520-0469(1977)034<1149:TIOPOT>2.0.CO;2.
Uin, J., and F. Mei, 2019: Cloud condensation nuclei particle counter instrument handbook – airborne version, DOE/SC-ARM-TR-225, Available from: https://www.arm.gov/publications/tech_reports/handbooks/doe-sc-arm-tr-225.pdf.
Wang, J., and Coauthors, 2021a: Aerosol and cloud experiments in the Eastern North Atlantic (ACE-ENA). Bull. Amer. Meteor. Soc., 103, E619−E641, https://doi.org/10.1175/BAMS-D-19-0220.1.
Wang, Y., X. J. Zheng, X. Q. Dong, B. K. Xi, P. Wu, T. Logan, and Y. L. Yung, 2020: Impacts of long-range transport of aerosols on marine-boundary-layer clouds in the eastern North Atlantic. Atmospheric Chemistry and Physics, 20, 14 741−14 755,
Wang, Y., and Coauthors, 2021b: Vertical profiles of trace gas and aerosol properties over the eastern North Atlantic: Variations with season and synoptic condition. Atmospheric Chemistry and Physics, 21, 11 079−11 098,
Watson, T. B., 2016: Particle-into-liquid sampler instrument handbook, DOE/SC-ARM-TR-162, Available from: https://www.arm.gov/publications/tech_reports/handbooks/pils_handbook.pdf.
Wood, R., 2005: Drizzle in Stratiform boundary layer clouds. Part I: Vertical and horizontal structure. J. Atmos. Sci., 62, 3011−3033, https://doi.org/10.1175/JAS3529.1.
Wood, R., 2006: Rate of loss of cloud droplets by coalescence in warm clouds. J. Geophys. Res. Atmos., 111, D21205, https://doi.org/10.1029/2006JD007553.
Wood, R., 2012: Stratocumulus clouds. Mon. Wea. Rev., 140, 2373−2423, https://doi.org/10.1175/MWR-D-11-00121.1.
Wood, R., D. Leon, M. Lebsock, J. Snider, and A. D. Clarke, 2012: Precipitation driving of droplet concentration variability in marine low clouds. J. Geophys. Res. Atmos., 117, D19210, https://doi.org/10.1029/2012JD018305.
Wood, R., and Coauthors, 2015: Clouds, aerosols, and precipitation in the marine boundary layer: An arm mobile facility deployment. Bull. Amer. Meteor. Soc., 96, 419−440, https://doi.org/10.1175/BAMS-D-13-00180.1.
Wu, P., X. Dong, and B. Xi, 2015: Marine boundary layer drizzle properties and their impact on cloud property retrieval. Atmospheric Measurement Techniques, 8, 3555−3562, https://doi.org/10.5194/amt-8-3555-2015.
Wu, P., X. Q. Dong, B. K. Xi, Y. G. Liu, M. Thieman, and P. Minnis, 2017: Effects of environment forcing on marine boundary layer cloud-drizzle processes. J. Geophys. Res. Atmos., 122, 4463−4478, https://doi.org/10.1002/2016JD026326.
Wu, P., B. K. Xi, X. Q. Dong, and Z. B. Zhang, 2018: Evaluation of autoconversion and accretion enhancement factors in general circulation model warm-rain parameterizations using ground-based measurements over the Azores. Atmos. Chem. Phys., 18, 17 405−17 420, https://doi.org/Atmospheric Chemistry and Physics.
Wu, P., X. Q. Dong, B. K. Xi, J. J. Tian, and D. M. Ward, 2020a: Profiles of MBL cloud and drizzle microphysical properties retrieved from ground-based observations and validated by aircraft in situ measurements Over the Azores. J. Geophys. Res. Atmos., 125, e2019JD032205, https://doi.org/10.1029/2019JD032205.
Wu, P., X. Q. Dong, and B. K. Xi, 2020b: A climatology of marine boundary layer cloud and drizzle properties derived from ground-based observations over the Azores. J. Climate, 33, 10 133−10 148,
Zawadowicz, M. A., and Coauthors, 2021: Aircraft measurements of aerosol and trace gas chemistry in the eastern North Atlantic. Atmospheric Chemistry and Physics, 21, 7983−8002, https://doi.org/10.5194/acp-21-7983-2021.
Zelinka, M. D., T. A. Myers, D. T. McCoy, S. Po-Chedley, P. M. Caldwell, P. Ceppi, S. A. Klein, K. E. Taylor, 2020: Causes of higher climate sensitivity in CMIP6 models. Geophys. Res. Lett., 47, e2019GL085782, https://doi.org/10.1029/2019GL085782.
Zhang, Z., and Coauthors, 2021: Vertical dependence of horizontal variation of cloud microphysics: Observations from the ACE-ENA field campaign and implications for warm-rain simulation in climate models. Atmospheric Chemistry and Physics, 21, 3103−3121, https://doi.org/10.5194/acp-21-3103-2021.
Zheng, G., and Coauthors, 2018: Marine boundary layer aerosol in the eastern North Atlantic: Seasonal variations and key controlling processes. Atmospheric Chemistry and Physics, 18, 17 615−17 635,
Zheng, X. J., B. K. Xi, X. Q. Dong, T. Logan, Y. Wang, and P. Wu, 2020: Investigation of aerosol–cloud interactions under different absorptive aerosol regimes using Atmospheric Radiation Measurement (ARM) southern Great Plains (SGP) ground-based measurements. Atmospheric Chemistry and Physics, 20, 3483−3501, https://doi.org/10.5194/acp-20-3483-2020.
Zheng, X. J., B. K. Xi, X. Q. Dong, P. Wu, T. Logan, and Y. Wang, 2022: Environmental effects on aerosol–cloud interaction in non-precipitating marine boundary layer (MBL) clouds over the eastern North Atlantic. Atmospheric Chemistry and Physics, 22, 335−354, https://doi.org/10.5194/acp-22-335-2022.