Alapaty, K., D. Niyogi, F. Chen, P. Pyle, A. Chandrasekar, and N. Seaman, 2008: Development of the flux-adjusting surface data assimilation system for mesoscale models. J. Appl. Meteorol. Climatol., 47, 2331−2350, https://doi.org/10.1175/2008JAMC1831.1.
Bakhshaii, A., and R. Stull, 2009: Deterministic ensemble forecasts using gene-expression programming. Wea. Forecasting, 24, 1431−1451, https://doi.org/10.1175/2009WAF2222192.1.
Baldauf, M., A. Seifert, J. Förstner, D. Majewski, M. Raschendorfer, and T. Reinhardt, 2011: Operational convective-scale numerical weather prediction with the COSMO model: Description and sensitivities. Mon. Wea. Rev., 139, 3887−3905, https://doi.org/10.1175/MWR-D-10-05013.1.
Cheng, W. Y. Y., and W. J. Steenburgh, 2005: Evaluation of surface sensible weather forecasts by the WRF and the Eta Models over the western United States. Wea. Forecasting, 20, 812−821, https://doi.org/10.1175/WAF885.1.
Clark, A. J., and Coauthors, 2012: An overview of the 2010 Hazardous Weather Testbed experimental forecast program spring experiment. Bull. Amer. Meteor. Soc., 93, 55−74, https://doi.org/10.1175/BAMS-D-11-00040.1.
Cui, B., Z. Toth, Y. J. Zhu, and D. C. Hou, 2012: Bias correction for global ensemble forecast. Wea. Forecasing, 27, 396−410, https://doi.org/10.1175/WAF-D-11-00011.1.
Delle Monache, L., and Coauthors, 2008: A Kalman-filter bias correction method applied to deterministic, ensemble averaged and probabilistic forecasts of surface ozone. Tellus, 60B, 239−249, https://doi.org/10.1111/j.1600-0889.2007.00332.x.
Delle Monache, L. D., T. Nipen, Y. B. Liu, G. Roux, and R. Stull, 2011: Kalman filter and analog schemes to postprocess numerical weather predictions. Mon. Wea. Rev., 139, 3554−3570, https://doi.org/10.1175/2011MWR3653.1.
Duan, H. X., Y. H. Li, T. J. Zhang, Z. X. Pu, C. L. Zhao, and Y. P. Liu, 2018: Evaluation of the forecast accuracy of near-surface temperature and wind in Northwest China based on the WRF model. Journal of Meteorological Research, 32, 469−490, https://doi.org/10.1007/s13351-018-7115-9.
Frediani, M. E. B., J. P. Hacker, E. N. Anagnostou, and T. Hopson, 2016: Evaluation of PBL parameterizations for modeling surface wind speed during storms in the Northeast United States. Wea. Forecasing, 31, 1511−1528, https://doi.org/10.1175/WAF-D-15-0139.1.
Frogner, I. L., T. Nipen, A. Singleton, J. B. Bremnes, and O. Vignes, 2016: Ensemble prediction with different spatial resolutions for the 2014 Sochi Winter Olympic Games: The effects of calibration and multimodel Approaches. Wea. Forecasing, 31, 1833−1851, https://doi.org/10.1175/WAF-D-16-0048.1.
Gneiting, T., A. E. Raftery, A. H. Westveld III, and T. Goldman, 2005: Calibrated probabilistic forecasting using ensemble model output statistics and minimum CRPS estimation. Mon. Wea. Rev., 133, 1098−1118, https://doi.org/10.1175/MWR2904.1.
Hacker, J. P., and D. L. Rife, 2007: A practical approach to sequential estimation of systematic error on near-surface mesoscale grids. Wea. Forecasting, 22, 1257−1273, https://doi.org/10.1175/2007WAF2006102.1.
Han, K., J. T. Choi, and C. Kim, 2016: Comparison of prediction performance using statistical postprocessing methods. Asia-Pacific Journal of Atmospheric Sciences, 52, 495−507, https://doi.org/10.1007/s13143-016-0034-8.
Han, K., J. T. Choi, and C. Kim, 2018: Comparison of statistical post-processing methods for probabilistic wind speed forecasting. Asia-Pacific Journal of Atmospheric Sciences, 54, 91−101, https://doi.org/10.1007/s13143-017-0062-z.
Hanna, S. R., and R. X. Yang, 2001: Evaluations of mesoscale models’ simulations of near-surface winds, temperature gradients, and mixing depths. J. Appl. Meteor., 40, 1095−1104, https://doi.org/10.1175/1520-0450(2001)040<1095:EOMMSO>2.0.CO;2.
Hong, S. Y., Y. Noh, and J. Dudhia, 2006: A new vertical diffusion package with an explicit treatment of entrainment processes. Mon. Wea. Rev., 134, 2318−2341, https://doi.org/10.1175/MWR3199.1.
Huang, L. P., D. H. Chen, L. T. Deng, Z. F. Xu, F. Yu, Y. Jiang, and F. F. Zhou, 2017: Main technical improvements of GRAPES Meso V4.0 and verification. Journal of Applied Meteorological Science, 28(1), 25−37, https://doi.org/10.11898/1001-7313.20170103. (in Chinese with English abstract
Iacono, M. J., J. S. Delamere, E. J. Mlawer, M. W. Shephard, S. A. Clough, and W. D. Collins, 2008: Radiative forcing by long-lived greenhouse gases: Calculations with the AER radiative transfer models. J. Geophys. Res., 113, D13103, https://doi.org/10.1029/2008JD009944.
Isaac, G. A., and Coauthors, 2014: Science of nowcasting Olympic weather for Vancouver 2010 (SNOW-V10): A world weather research programme project. Pure Appl. Geophys., 171, 1−24, https://doi.org/10.1007/s00024-012-0579-0.
Jiménez, P. A., and J. Dudhia, 2012: Improving the representation of resolved and unresolved topographic effects on surface wind in the WRF model. J. Appl. Meteorol. Climatol., 51, 300−316, https://doi.org/10.1175/JAMC-D-11-084.1.
Joe, P., and Coauthors, 2010: Weather services, science advances, and the Vancouver 2010 Olympic and Paralympic winter games. Bull. Amer. Meteor. Soc., 91, 31−36, https://doi.org/10.1175/2009BAMS2998.1.
Kiktev, D., and Coauthors, 2017: FROST-2014: The Sochi winter Olympics international project. Bull. Amer. Meteor. Soc., 98, 1908−1929, https://doi.org/10.1175/BAMS-D-15-00307.1.
Lee, Y. H., G. Lee, S. Joo, and K. D. Ahn, 2018: Observational study of surface wind along a sloping surface over mountainous terrain during Winter. Adv. Atmos. Sci., 35(3), 276−284, https://doi.org/10.1007/s00376-017-7075-5.
Leroyer, S., S. Bélair, S. Z. Husain, and J. Mailhot, 2014: Subkilometer numerical weather prediction in an urban coastal area: A case study over the Vancouver metropolitan area. J. Appl. Meteorol. Climatol., 53, 1433−1453, https://doi.org/10.1175/JAMC-D-13-0202.1.
Liu, Y. J., S. G. Miao, L. Liu, and F. Hu, 2019: Effects of a modified sub-grid-scale terrain parameterization scheme on the simulation of low-layer wind over complex terrain. Journal of Applied Meteorological Science, 30, 70−81, https://doi.org/10.11898/1001-7313.20190107. (in Chinese with English abstract
Mass, C. F., D. Ovens, K. Westrick, and B. A. Colle, 2002: Does increasing horizontal resolution produce more skillful forecasts? The results of two years of real-time numerical weather prediction over the Pacific Northwest Bull. Amer. Meteor. Soc., 83, 407−430, https://doi.org/10.1175/1520-0477(2002)083<0407:DIHRPM>2.3.CO;2.
Min, J. J, 2014: Evaluation on surface meteorological element forecast by Beijing Rapid Update Cycle System. Journal of Applied Meteorological Science, 25, 265−273, https://doi.org/10.3969/j.issn.1001-7313.2014.03.002. (in Chinese with English abstract
Raderschall, N., M. Lehning, and C. Schär, 2008: Fine-scale modeling of the boundary layer wind field over steep topography. Water Resour. Res., 44, W09425, https://doi.org/10.1029/2007WR006544.
Raftery, A. E., T. Gneiting, F. Balabdaoui, and M. Polakowski, 2005: Using Bayesian model averaging to calibrate forecast ensembles. Mon. Wea. Rev., 133, 1155−1174, https://doi.org/10.1175/MWR2906.1.
Seity, Y., P. Brousseau, S. Malardel, G. Hello, P. Bénard, F. Bouttier, C. Lac, and V. Masson, 2011: The AROME-France convective-scale operational model. Mon. Wea. Rev., 139, 976−991, https://doi.org/10.1175/2010MWR3425.1.
Shafran, P. C., N. L. Seaman, and G. A. Gayno, 2000: Evaluation of numerical predictions of boundary layer structure during the Lake Michigan Ozone Study. J. Appl. Meteorol. Climatol., 39, 412−426, https://doi.org/10.1175/1520-0450(2000)039<0412:EONPOB>2.0.CO;2.
Taylor, K. E., 2001: Summarizing multiple aspects of model performance in a single diagram. J. Geophys. Res., 106, 7183−7192, https://doi.org/10.1029/2000JD900719.
Thompson, G., and T. Eidhammer, 2014: A study of Aerosol impacts on clouds and precipitation development in a large winter cyclone. J. Atmos. Sci., 71, 3636−3658, https://doi.org/10.1175/JAS-D-13-0305.1.
Thompson, G., P. R. Field, R. M. Rasmussen, and W. D. Hall, 2008: Explicit forecasts of winter precipitation using an improved Bulk Microphysics Scheme. Part II: Implementation of a new snow parameterization. Mon. Wea. Rev., 136, 5095−5115, https://doi.org/10.1175/2008MWR2387.1.
Vasil’ev, E. V., and T. G. Dmitrieva, 2015: Forecasting extreme weather phenomena and processes during the test events and Sochi-2014 Olympic and Paralympic Games. Russian Meteorology and Hydrology, 40(8), 513−522, https://doi.org/10.3103/S1068373915080038.
Vionnet, V., S. Belair, C. Girard, and A. Plante, 2015: Wintertime subkilometer numerical forecasts of near-surface variables in the Canadian Rocky Mountains. Mon. Wea. Rev., 143, 666−686, https://doi.org/10.1175/MWR-D-14-00128.1.
Whiteman, C. D., S. Zhong, W. J. Shaw, J. M. Hubbe, X. Bian, and J. Mittelstadt, 2001: Cold pools in the Columbia Basin. Wea. Forecasting, 16, 432−447, https://doi.org/10.1175/1520-0434(2001)016<0432:CPITCB>2.0.CO;2.
Zhang, D. L., and W. Z. Zheng, 2004: Diurnal cycles of surface winds and temperatures as simulated by five boundary layer parameterizations. J. Appl. Meteorol. Climatol., 43, 157−169, https://doi.org/10.1175/1520-0450(2004)043<0157:DCOSWA>2.0.CO;2.
Zhang, H. L., Z. X. Pu, and X. B. Zhang, 2013: Examination of errors in near-surface temperature and wind from WRF numerical simulations in regions of complex terrain. Wea. Forecasting, 28, 893−914, https://doi.org/10.1175/WAF-D-12-00109.1.
Zhang, Y. T., H. Tong, and J. Sun, 2020: Application of a bias correction method to meteorological forecast for the Pyeongchang Winter Olympic Games. Journal of Applied Meteorological Science, 31(1), 27−41. (in Chinese with English abstract
Zhong, S. Y., and J. Fast, 2003: An evaluation of the MM5, RAMS, and Meso-Eta models at subkilometer resolution using VTMX field campaign data in the Salt Lake Valley. Mon. Wea. Rev., 131, 1301−1322, https://doi.org/10.1175/1520-0493(2003)131<1301:AEOTMR>2.0.CO;2.