Amaral, J. A., C. Archambault, S. R. Richards, and R. Knowles, 1995: Denitrification associated with groups I and II methanotrophs in a gradient enrichment system. FEMS Microbiology Ecology, 18, 289−298, https://doi.org/10.1111/j.1574-6941.1995.tb00185.x.
Barberán, A., S. T. Bates, E. O. Casamayor, and N. Fierer, 2012: Using network analysis to explore co-occurrence patterns in soil microbial communities. The ISME Journal, 6, 343−351, https://doi.org/10.1038/ismej.2011.119.
Bascompte, J., 2007: Networks in ecology. Basic and Applied Ecology, 8, 485−490, https://doi.org/10.1016/j.baae.2007.06.003.
Berry, D., and S. Widder, 2014: Deciphering microbial interactions and detecting keystone species with co-occurrence networks. Frontiers in Microbiology, 5, 219, https://doi.org/10.3389/fmicb.2014.00219.
Bodelier, P. L. E., and H. J. Laanbroek, 2004: Nitrogen as a regulatory factor of methane oxidation in soils and sediments. FEMS Microbiology Ecology, 47, 265−277, https://doi.org/10.1016/S0168-6496(03)00304-0.
Bodelier, P. L. E., P. Roslev, T. Henckel, and P. Frenzel, 2000: Stimulation by ammonium-based fertilizers of methane oxidation in soil around rice roots. Nature, 403, 421−424, https://doi.org/10.1038/35000193.
Chapman, E. J., H. Cadillo-Quiroz, D. L. Childers, M. R. Turetsky, and M. P. Waldrop, 2017: Soil microbial community composition is correlated to soil carbon processing along a boreal wetland formation gradient. European Journal of Soil Biology, 82, 17−26, https://doi.org/10.1016/j.ejsobi.2017.08.001.
Chen, Y., M. G. Dumont, N. P. McNamara, P. M. Chamberlain, L. Bodrossy, N. Stralis-Pavese, and J. C. Murrell, 2008: Diversity of the active methanotrophic community in acidic peatlands as assessed by mRNA and SIP-PLFA analyses. Environmental Microbiology, 10(2), 446−459, https://doi.org/10.1111/j.1462-2920.2007.01466.x.
Chowdhury, T. R., and R. P. Dick, 2013: Ecology of aerobic methanotrophs in controlling methane fluxes from wetlands. Applied Soil Ecology, 65, 8−22, https://doi.org/10.1016/j.apsoil.2012.12.014.
De Menezes, A. B., A. E. Richardson, and P. H. Thrall, 2017: Linking fungal–bacterial co-occurrences to soil ecosystem function. Current Opinion in Microbiology, 37, 135−141, https://doi.org/10.1016/j.mib.2017.06.006.
Drollinger, S., A. Maier, and S. Glatzel, 2019: Interannual and seasonal variability in carbon dioxide and methane fluxes of a pine peat bog in the Eastern Alps, Austria. Agricultural and Forest Meteorology, 275, 69−78, https://doi.org/10.1016/j.agrformet.2019.05.015.
Hao, Q. Q., F. H. Liu, Y. C. Zhang, O. M. Wang, and L. L. Xiao, 2020: Methylobacter accounts for strong aerobic methane oxidation in the Yellow River Delta with characteristics of a methane sink during the dry season. Science of the Total Environment, 704, 135383, https://doi.org/10.1016/j.scitotenv.2019.135383.
He, S. M., and Coauthors, 2015: Patterns in wetland microbial community composition and functional gene repertoire associated with methane emissions. mBio, 6(3), e00066−15, https://doi.org/10.1128/mBio.00066-15.
Horn, M. A., C. Matthies, K. Kusel, A. Schramm, and H. L. Drake, 2003: Hydrogenotrophic methanogenesis by moderately acid-tolerant methanogens of a methane-emitting acidic peat. Applied and Environmental Microbiology, 69(1), 74−83, https://doi.org/10.1128/AEM.69.1.74-83.2003.
Huang, R. L., Z. Y. Zhang, X. Xiao, N. Zhang, X. Y. Wang, Z. P. Yang, K. Q. Xu, and Y. T. Liang, 2019: Structural changes of soil organic matter and the linkage to rhizosphere bacterial communities with biochar amendment in manure fertilized soils. Science of the Total Environment, 692, 333−343, https://doi.org/10.1016/j.scitotenv.2019.07.262.
IPCC, 2013: Climate Change 2013: The Physical Science Basis: Working Group I Contribution to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA.
Juottonen, H., E.-S. Tuittila, S. Juutinen, H. Fritze, and K. Yrjälä, 2008: Seasonality of rDNA-and rRNA-derived archaeal communities and methanogenic potential in a boreal mire. The ISME Journal, 2(11), 1157−1168, https://doi.org/10.1038/ismej.2008.66.
Kolton, M., A. Marks, R. M. Wilson, J. P. Chanton, and J. E. Kostka, 2019: Impact of Warming on greenhouse gas production and microbial diversity in anoxic peat from a Sphagnum-dominated bog (Grand Rapids, Minnesota, United States). Frontiers in Microbiology, 10, 870, https://doi.org/10.3389/fmicb.2019.00870.
Layeghifard, M., D. M. Hwang, and D. S. Guttman, 2017: Disentangling interactions in the microbiome: A network perspective. Trends in Microbiology, 25(3), 217−228, https://doi.org/10.1016/j.tim.2016.11.008.
Li, D., H. W. Ni, S. Jiao, Y. H. Lu, J. Z. Zhou, B. Sun, and Y. T. Liang, 2021: Coexistence patterns of soil methanogens are closely tied to methane generation and community assembly in rice paddies. Microbiome, 9(1), 20, https://doi.org/10.1186/s40168-020-00978-8.
Liebner, S., L. Ganzert, A. Kiss, S. Z. Yang, D. Wagner, and M. M. Svenning, 2015: Shifts in methanogenic community composition and methane fluxes along the degradation of discontinuous permafrost. Frontiers in Microbiology, 6, 356, https://doi.org/10.3389/fmicb.2015.00356.
Long, K. D., L. B. Flanagan, and T. B. Cai, 2010: Diurnal and seasonal variation in methane emissions in a northern Canadian peatland measured by eddy covariance. Global Change Biology, 16(9), 2420−2435, https://doi.org/10.1111/j.1365-2486.2009.02083.x.
Lu, L. H., S. X. Yin, X. Liu, W. M. Zhang, T. Y. Gu, Q. R. Shen, and H. Z. Qiu, 2013: Fungal networks in yield-invigorating and -debilitating soils induced by prolonged potato monoculture. Soil Biology and Biochemistry, 65, 186−194, https://doi.org/10.1016/j.soilbio.2013.05.025.
Lupatini, M., A. K. A. Suleiman, R. J. S. Jacques, Z. I. Antoniolli, A. De Siqueira Ferreira, E. E. Kuramae, and L. F. W. Roesch, 2014: Network topology reveals high connectance levels and few key microbial genera within soils. Frontiers in Environmental Science, 2, 10, https://doi.org/10.3389/fenvs.2014.00010.
Ma, B., and Coauthors, 2016: Geographic patterns of co-occurrence network topological features for soil microbiota at continental scale in eastern China. The ISME Journal, 10(8), 1891−1901, https://doi.org/10.1038/ismej.2015.261.
Ma, B., and Coauthors, 2020: Earth microbial co-occurrence network reveals interconnection pattern across microbiomes. Microbiome, 8(1), 82, https://doi.org/10.1186/s40168-020-00857-2.
Newman, M. E. J., 2006: Finding community structure in networks using the eigenvectors of matrices. Phys. Rev. E, 74(3), 036104, https://doi.org/10.1103/PHYSREVE.74.036104.
Olesen, J. M., J. Bascompte, Y. L. Dupont, and P. Jordano, 2007: The modularity of pollination networks. Proceedings of the National Academy of Sciences of the United States, 104(50), 19891−19896, https://doi.org/10.1073/pnas.0706375104.
Peltoniemi, K., and Coauthors, 2016: Responses of methanogenic and methanotrophic communities to warming in varying moisture regimes of two boreal fens. Soil Biology and Biochemistry, 97, 144−156, https://doi.org/10.1016/j.soilbio.2016.03.007.
Pypker, T. G., P. A. Moore, J. M. Waddington, J. A. Hribljan, and R. C. Chimner, 2013: Shifting environmental controls on CH4 fluxes in a sub-boreal peatland. Biogeosciences, 10(12), 7971−7981, https://doi.org/10.5194/bg-10-7971-2013.
Ramakrishnan, B., T. Lueders, P. F. Dunfield, R. Conrad, and M. W. Friedrich, 2001: Archaeal community structures in rice soils from different geographical regions before and after initiation of methane production. FEMS Microbiology Ecology, 37(2), 175−186, https://doi.org/10.1111/j.1574-6941.2001.tb00865.x.
Ren, J. S., C. C. Song, A. X. Hou, Y. Y. Song, X. Y. Zhu, and G. A. Cagle, 2018: Shifts in soil bacterial and archaeal communities during freeze-thaw cycles in a seasonal frozen marsh, Northeast China. Science of the Total Environment, 625, 782−791, https://doi.org/10.1016/j.scitotenv.2017.12.309.
Saunois, M., and Coauthors, 2020: The global methane budget 2000−2017. Earth System Science Data, 12(3), 1561−1623, https://doi.org/10.5194/essd-12-1561-2020.
Steele, J. A., and Coauthors, 2011: Marine bacterial, archaeal and protistan association networks reveal ecological linkages. The ISME Journal, 5(9), 1414−1425, https://doi.org/10.1038/ismej.2011.24.
Thauer, R. K., A. K. Kaster, H. Seedorf, W. Buckel, and R. Hedderich, 2008: Methanogenic archaea: Ecologically relevant differences in energy conservation. Nature Reviews Microbiology, 6(8), 579−591, https://doi.org/10.1038/nrmicro1931.
Toju, H., and Coauthors, 2018: Core microbiomes for sustainable agroecosystems. Nature Plants, 4(5), 247−257, https://doi.org/10.1038/s41477-018-0139-4.
Wagner, D., 2017: Effect of varying soil water potentials on methanogenesis in aerated marshland soils. Scientific Reports, 7, 14706, https://doi.org/10.1038/s41598-017-14980-y.
Wang, X. H., M. H. Zhu, N. K. Li, S. Du, J. D. Yang, and Y. Li, 2018: Effects of CeO2 nanoparticles on bacterial community and molecular ecological network in activated sludge system. Environmental Pollution, 238, 516−523, https://doi.org/10.1016/j.envpol.2018.03.034.
WMO/GAW, 2020: WMO greenhouse gas bulletin: The state of greenhouse gases in the atmosphere based on global observations through 2019, https://library.wmo.int/doc_num.php?explnum_id=10437.
Xie, F., A. Z. Ma, H. C. Zhou, Y. Liang, J. Yin, K. Ma, X. L. Zhuang, and G. Q. Zhuang, 2020: Niche differentiation of denitrifying anaerobic methane oxidizing bacteria and archaea leads to effective methane filtration in a Tibetan alpine wetland. Environment International, 140, 105764, https://doi.org/10.1016/j.envint.2020.105764.
Yavitt, J. B., E. Yashiro, H. Cadillo-Quiroz, and S. H. Zinder, 2012: Methanogen diversity and community composition in peatlands of the central to northern Appalachian Mountain region, North America. Biogeochemistry, 109, 117−131, https://doi.org/10.1007/s10533-011-9644-5.
Zhang, J., S. Jiao, and Y. H. Lu, 2018: Biogeographic distribution of bacterial, archaeal and methanogenic communities and their associations with methanogenic capacity in Chinese wetlands. Science of the Total Environment, 622−623, 664−675, https://doi.org/10.1016/j.scitotenv.2017.11.279.
Zhang, Q., R. Sun, G. Q. Jiang, Z. W. Xu, and S. M. Liu, 2016: Carbon and energy flux from a Phragmites australis wetland in Zhangye oasis-desert area, China. Agricultural and Forest Meteorology, 230−231, 45−57,
Zhang, Q. T., and Coauthors, 2019: High variations of methanogenic microorganisms drive full-scale anaerobic digestion process. Environment International, 126, 543−551, https://doi.org/10.1016/j.envint.2019.03.005.
Zhao, Y. X., J. Q. Wang, Y. Liu, P. Zheng, and B. L. Hu, 2021: Microbial interaction promotes desulfurization efficiency under high pH condition. Environ. Res., 200, 111423, https://doi.org/10.1016/j.envres.2021.111423.
Zhou, J. Z., Y. Deng, F. Luo, Z. L. He, and Y. F. Yang, 2011: Phylogenetic molecular ecological network of soil microbial communities in response to elevated CO2. mBio, 2(4), e00122−11, https://doi.org/10.1128/mBio.00122-11.
Zou, L. H., W. J. Pei, T. Li, Z. Y. He, and Y. Cheung, 2007: Topological fractal networks introduced by mixed degree distribution. Physica A: Statistical Mechanics and its Applications, 380, 592−600, https://doi.org/10.1016/j.physa.2007.02.060.