Alou-Font, E., C.-J. Mundy, S. Roy, M. Gosselin, and S. Agustí, 2013: Snow cover affects ice algal pigment composition in the coastal Arctic Ocean during spring. Marine Ecology Progress Series, 474, 89−104, https://doi.org/10.3354/meps10107.
Blazey, B. A., M. M. Holland, and E. C. Hunke, 2013: Arctic Ocean sea ice snow depth evaluation and bias sensitivity in CCSM. The Cryosphere, 7, 1887−1900, https://doi.org/10.5194/tc-7-1887-2013.
Bliss, A. C., and M. R. Anderson, 2018: Arctic sea ice melt onset timing from passive microwave-based and surface air temperature-based methods. J. Geophys. Res., 123, 9063−9080, https://doi.org/10.1029/2018JD028676.
Eicken, H., T. C. Grenfell, D. K. Perovich, J. A. Richter-Menge, and K. Frey, 2004: Hydraulic controls of summer Arctic pack ice albedo. J. Geophys. Res., 109, C08007, https://doi.org/10.1029/2003JC001989.
Eyring, V., S. Bony, G. A. Meehl, C. A. Senior, B. Stevens, R. J. Stouffer, and K. E. Taylor, 2016: Overview of the Coupled Model Intercomparison Project Phase 6(CMIP6) experimental design and organization. Geoscientific Model Development, 9, 1937−1958, https://doi.org/10.5194/gmd-9-1937-2016.
Gent, P. R., and Coauthors, 2011: The community climate system model version 4. J. Climate, 24, 4973−4991, https://doi.org/10.1029/2010JC006243.
Gidden, M. J., and Coauthors, 2019: Global emissions pathways under different socioeconomic scenarios for use in CMIP6: A dataset of harmonized emissions trajectories through the end of the century. Geoscientific Model Development, 12, 1443−1475, https://doi.org/10.5194/gmd-12-1443-2019.
Haas, C., D. N. Thomas, and J. Bareiss, 2001: Surface properties and processes of perennial Antarctic sea ice in summer. J. Glaciol., 47, 613−625, https://doi.org/10.3189/172756501781831864.
Hezel, P. J., X. Zhang, C. M. Bitz, B. P. Kelly, and F. Massonnet, 2012: Projected decline in spring snow depth on Arctic sea ice caused by progressively later autumn open ocean freeze‐up this century. Geophys. Res. Lett., 39, L17505, https://doi.org/10.1029/2012GL052794.
Holland, M. M., and L. Landrum, 2015: Factors affecting projected Arctic surface shortwave heating and albedo change in coupled climate models. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, 373, 20140162, https://doi.org/10.1098/rsta.2014.0162.
Jeffries, M. O., H. R. Krouse, B. Hurst-Cushing, and T. Maksym, 2001: Snow-ice accretion and snow-cover depletion on Antarctic first-year sea-ice floes. Annals of Glaciology, 33, 51−60, https://doi.org/10.3189/172756401781818266.
Kawamura, T., K. I. Ohshima, T. Takizawa, and S. Ushio, 1997: Physical, structural, and isotopic characteristics and growth processes of fast sea ice in Lützow-Holm Bay, Antarctica. J. Geophys. Res., 102, 3345−3355, https://doi.org/10.1029/96JC03206.
Kwok, R., B. Panzer, C. Leuschen, S. Pang, T. Markus, B. Holt, and S. Gogineni, 2011: Airborne surveys of snow depth over Arctic sea ice. J. Geophys. Res., 116, C11018, https://doi.org/10.1029/2011JC007371.
Ledley, T. S., 1991: Snow on sea ice: Competing effects in shaping climate. J. Geophys. Res., 96, 1 7195−1 7208, https://doi.org/10.1029/91JD01439.
Ledley, T. S., 1993: Variations in snow on sea ice: A mechanism for producing climate variations. J. Geophys. Res., 98, 10 401−10 410, https://doi.org/10.1029/93JD00316.
Leppäranta, M., 1983: A growth model for black ice, snow ice and snow thickness in subarctic basins. Hydrology Research, 14, 59−70, https://doi.org/10.2166/nh.1983.0006.
Light, B., S. Dickinson, D. K. Perovich, and M. M. Holland, 2015: Evolution of summer Arctic sea ice albedo in CCSM4 simulations: Episodic summer snowfall and frozen summers. J. Geophys. Res., 120, 284−303, https://doi.org/10.1002/2014JC010149.
Liu, J. P., Y. Y. Zhang, X. Cheng, and Y. Y. Hu, 2019: Retrieval of snow depth over arctic sea ice using a deep neural network. Remote Sensing, 11, 2864, https://doi.org/10.3390/rs11232864.
Lund-Hansen, L. C., I. Hawes, M. Holtegaard Nielsen, I. Dahllöf, and B. K. Sorrell, 2018: Summer meltwater and spring sea ice primary production, light climate and nutrients in an Arctic estuary, Kangerlussuaq, west Greenland. Arctic, Antarctic, and Alpine Research, 50, S100025, https://doi.org/10.1080/15230430.2017.1414468.
Maksym, T., and T. Markus, 2008: Antarctic sea ice thickness and snow-to-ice conversion from atmospheric reanalysis and passive microwave snow depth. J. Geophys. Res., 113, C02S12, https://doi.org/10.1029/2006JC004085.
Markus, T., J. C. Stroeve, and J. Miller, 2009: Recent changes in Arctic sea ice melt onset, freezeup, and melt season length. J. Geophys. Res., 114, C12024, https://doi.org/10.1029/2009JC005436.
Maslanik, J., J. Stroeve, C. Fowler, and W. Emery, 2011: Distribution and trends in Arctic sea ice age through spring 2011. Geophys. Res. Lett., 38, L13502, https://doi.org/10.1029/2011GL047735.
Massom, R. A., and Coauthors, 2001: Snow on Antarctic sea ice. Rev. Geophys., 39, 413−445, https://doi.org/10.1029/2000RG000085.
Maykut, G. A., and N. Untersteiner, 1971: Some results from a time-dependent thermodynamic model of sea ice. J. Geophys. Res., 76, 1550−1575, https://doi.org/10.1029/JC076i006p01550.
Maykut, G. A., 1978: Energy exchange over young sea ice in the central Arctic. J. Geophys. Res., 83, 3646−3658, https://doi.org/10.1029/JC083iC07p03646.
Merkouriadi, I., G. E. Liston, R. M. Graham, and M. A. Granskog, 2020: Quantifying the potential for snow‐ice formation in the Arctic Ocean. Geophys. Res. Lett., 47, e2019GL085020, https://doi.org/10.1029/2019GL085020.
Nghiem, S. V., I. G. Rigor, D. K. Perovich, P. Clemente‐Colón, J. W. Weatherly, and G. Neumann, 2007: Rapid reduction of Arctic perennial sea ice. Geophys. Res. Lett., 34, L19504, https://doi.org/10.1029/2007GL031138.
Notz, D., A. Jahn, M. Holland, E. Hunke, F. Massonnet, J. Stroeve, B. Tremblay, and M. Vancoppenolle, 2016: The CMIP6 Sea-Ice Model Intercomparison Project (SIMIP): Understanding sea ice through climate-model simulations. Geoscientific Model Development, 9, 3427−3446, https://doi.org/10.5194/gmd-9-3427-2016.
O’Neill, B. C., and Coauthors, 2016: The scenario model intercomparison project (ScenarioMIP) for CMIP6. Geoscientific Model Development, 9, 3461−3482, https://doi.org/10.5194/gmd-9-3461-2016.
Perovich, D., C. Polashenski, A. Arntsen, and C. Stwertka, 2017: Anatomy of a late spring snowfall on sea ice. Geophys. Res. Lett., 44, 2802−2809, https://doi.org/10.1002/2016GL071470.
Perovich, D. K., T. C. Grenfell, B. Light, and P. V. Hobbs, 2002: Seasonal evolution of the albedo of multiyear Arctic sea ice. J. Geophys. Res., 107, 8044, https://doi.org/10.1029/2000JC000438.
Petrich, C., H. Eicken, C. M. Polashenski, M. Sturm, J. P. Harbeck, D. K. Perovich, and D. C. Finnegan, 2012: Snow dunes: A controlling factor of melt pond distribution on Arctic sea ice. J. Geophys. Res., 117, C09029, https://doi.org/10.1029/2012JC008192.
Polashenski, C., D. Perovich, and Z. Courville, 2012: The mechanisms of sea ice melt pond formation and evolution. J. Geophys. Res., 117, C01001, https://doi.org/10.1029/2011JC007231.
Polashenski, C., K. M. Golden, D. K. Perovich, E. Skyllingstad, A. Arnsten, C. Stwertka, and N. Wright, 2017: Percolation blockage: A process that enables melt pond formation on first year Arctic sea ice. J. Geophys. Res., 122, 413−440, https://doi.org/10.1002/2016JC011994.
Rodionov, S. N., 2004: A sequential algorithm for testing climate regime shifts. Geophys. Res. Lett., 31, L09204, https://doi.org/10.1029/2004GL019448.
Rostosky, P., G. Spreen, S. L. Farrell, T. Frost, G. Heygster, and C. Melsheimer, 2018: Snow depth retrieval on Arctic sea ice from passive microwave radiometers - improvements and extensions to multiyear ice using lower frequencies. J. Geophys. Res., 123, 7120−7138, https://doi.org/10.1029/2018JC014028.
Sturm, M., and R. A. Massom, 2010: Snow on sea ice. Sea ice. 2nd ed., D. N. Thomas and G. S. Dieckmann, Eds., Blackwell, 153−204, https://doi.org/10.1002/9781444317145.ch5.
Sturm, M., D. K. Perovich, and J. Holmgren, 2002: Thermal conductivity and heat transfer through the snow on the ice of the Beaufort Sea. J. Geophys. Res., 107, 8043, https://doi.org/10.1029/2000JC000409.
Taylor, K. E., R. J. Stouffer, and G. A. Meehl, 2012: An overview of CMIP5 and the experiment design. Bull. Amer. Meteor. Soc., 93, 485−498, https://doi.org/10.1175/BAMS-D-11-00094.1.
Tebaldi, C., J. M. Arblaster, and R. Knutti, 2011: Mapping model agreement on future climate projections. Geophys. Res. Lett., 38, L23701, https://doi.org/10.1029/2011GL049863.
Tschudi, M., W. N. Meier, J. S. Stewart, C. Fowler, and J. Maslanik, 2019: EASE-grid sea ice age, version 4. [Available online from https://doi.org/10.5067/UTAV7490FEPB]
Untersteiner, N., and F. I. Badgley, 1965: The roughness parameters of sea ice. J. Geophys. Res., 70, 4573−4577, https://doi.org/10.1029/JZ070i018p04573.
Warren, S. G., 1982: Optical properties of snow. Rev. Geophys., 20, 67−89, https://doi.org/10.1029/RG020i001p00067.
Warren, S. G., I. G. Rigor, N. Untersteiner, V. F. Radionov, N. N. Bryazgin, Y. I. Aleksandrov, and R. Colony, 1999: Snow depth on Arctic sea ice. J. Climate, 12, 1814−1829, https://doi.org/10.1175/1520-0442(1999)012<1814:SDOASI>2.0.CO;2.
Webster, M., and Coauthors, 2018: Snow in the changing sea-ice systems. Nature Climate Change, 8, 946−953, https://doi.org/10.1038/s41558-018-0286-7.