Abraham, J., J. R. Stark, and W. J. Minkowycz, 2015: Briefing: Extreme weather: Observed Precipitation Changes in the USA. Proceedings of the Institution of Civil Engineers-Forensic Engineering, 168, 68−70, https://doi.org/10.1680/feng.14.00015.
Abraham, J., L. J. Cheng, and M. E. Mann, 2017: Briefing: Future climate projections allow engineering planning. Forensic Engineering, Proceedings of the Institution of Civil Engineers, 170, 54−57.
Abram, N., and Coauthors, 2019: Framing and context of the report. IPCC Special Report on the Ocean and Cryosphere in a Changing Climate, H.-O. Pörtner et al., Eds., Intergovernmental Panel on Climate Chang, in press.
Argo, 2020: Argo Float Data and Metadata from Global Data Assembly Centre (Argo GDAC). SEANOE. Available from
Armour, K. C., J. Marshall, J. R. Scott, A. Donohoe, and E. R. Newsom, 2016: Southern Ocean warming delayed by circumpolar upwelling and equatorward transport. Nature Geoscience, 9(7), 549−554, https://doi.org/10.1038/Ngeo2731.
Ben Ismail S., K. Schroeder, J. Chiggiato, S. Sparnocchia, and M. Borghini, 2021: Long term changes monitored in two Mediterranean Channels. Copernicus Marine Service Ocean State Report, Issue 5, K. von Schuckmann et al., Eds., 48−52,
Boers, N., 2021: Observation-based early-warning signals for a collapse of the Atlantic Meridional Overturning Circulation. Nature Climate Change, 11, 680−688, https://doi.org/10.1038/s41558-021-01097-4.
Böning, C. W., A. Dispert, M. Visbeck, S. R. Rintoul, and F. U. Schwarzkopf, 2008: The response of the Antarctic Circumpolar Current to recent climate change. Nature Geoscience, 1(12), 864−869, https://doi.org/10.1038/ngeo362.
Boyer, T. P., and Coauthors, 2018: World Ocean Database 2018. A. V. Mishonov, Technical Editor, NOAA Atlas NESDIS 87.
Cheng, L., Zhu, J., Cowley, R., Boyer, T., & Wijffels, S., 2014: Time, Probe Type, and Temperature Variable Bias Corrections to Historical Expendable Bathythermograph Observations. Journal of Atmospheric and Oceanic Technology, 31(8), 1793−1825, https://doi.org/10.1175/JTECH-D-13-00197.1.
Cheng, L. J., J. Abraham, Z. Hausfather, and K. E. Trenberth, 2019a: How fast are the oceans warming. . Science, 363, 128−129, https://doi.org/10.1126/science.aav7619.
Cheng, L. J., K. E. Trenberth, J. Fasullo, T. Boyer, J. Abraham, and J. Zhu, 2017: Improved estimates of ocean heat content from 1960 to 2015. Science Advances, 3, e1601545,
Cheng, L. J., K. E. Trenberth, J. T. Fasullo, M. Mayer, M. Balmaseda, and J. Zhu, 2019b: Evolution of ocean heat content related to ENSO. J. Climate, 32(12), 3529−3556, https://doi.org/10.1175/JCLI-D-18-0607.1.
Cheng, L. J., K. Trenberth, J. Fasullo, J. Abraham, T. Boyer, K. von Schuckmann, and J. Zhu, 2018: Taking the pulse of the planet. Eos, 99, 14−16, https://doi.org/10.1029/2017EO081839.
Cornwall, W., 2019: A new ‘Blob’ menaces Pacific ecosystems. Science, 365, 1233, https://doi.org/10.1126/science.365.6459.1233.
Deser, C., and Coauthors, 2020: Isolating the evolving contributions of anthropogenic aerosols and greenhouse gases: A new CESM1 large ensemble community resource. J. Climate, 33(18), 7835−7858, https://doi.org/10.1175/JCLI-D-20-0123.1.
Duan, J., and Coauthors, 2021: Rapid sea level rise in the Southern Hemisphere subtropical oceans. J. Climate, 34(23), 9401−9423, https://doi.org/10.1175/JCLI-D-21-0248.1.
Emanuel, K., 2021a: Response of global tropical cyclone activity to increasing CO2: Results from downscaling CMIP6 models. J. Climate, 34(1), 57−70, https://doi.org/10.1175/JCLI-D-20-0367.1.
Emanuel, K., 2021b: Atlantic tropical cyclones downscaled from climate reanalyses show increasing activity over past 150 years. Nat Commun., 12, 7027, https://doi.org/10.1038/s41467-021-27364-8.
Fasullo, J. T., 2020: Evaluating simulated climate patterns from the CMIP archives using satellite and reanalysis datasets using the Climate Model Assessment Tool (CMATv1). Geoscientific Model Development, 13, 3627−3642, https://doi.org/10.5194/gmd-13-3627-2020.
Fasullo, J. T., and R. S. Nerem, 2018: Altimeter-era emergence of the patterns of forced sea-level rise in climate models and implications for the future. Proceedings of the National Academy of Sciences of the United States of America, 115, 12 944−12 949,
Fasullo, J. T., N. Rosenbloom, R. R. Buchholz, G. Danabasoglu, D. M. Lawrence, and J.-F. Lamarque, 2021: Coupled climate responses to recent Australian wildfire and COVID-19 emissions anomalies estimated in CESM2. Geophys Res. Lett., 48, e2021GL093841, https://doi.org/10.1029/2021GL093841.
Frölicher, T. L., J. L. Sarmiento, D. J. Paynter, J. P. Dunne, J. P. Krasting, and M. Winton, 2015: Dominance of the Southern Ocean in anthropogenic carbon and heat uptake in CMIP5 models. J. Climate, 28(2), 862−886, https://doi.org/10.1175/JCLI-D-14-00117.1.
Fyfe, J. C., V. V. Kharin, N. Swart, G. M. Flato, M. Sigmond, and N. P. Gillett, 2021: Quantifying the influence of short-term emission reductions on climate. Science Advances, 7(10), eabf7133, https://doi.org/10.1126/sciadv.abf7133.
Gao, L. B., S. R. Rintoul, and W. D. Yu, 2018: Recent wind-driven change in Subantarctic Mode Water and its impact on ocean heat storage. Nature Climate Change, 8(1), 58−63, https://doi.org/10.1038/s41558-017-0022-8.
Gille, S. T., 2002: Warming of the Southern Ocean since the 1950s. Science, 295(5558), 1275−1277, https://doi.org/10.1126/science.1065863.
Gouretski, V., J. H. Jungclaus, and H. Haak, 2013: Revisiting the Meteor 1925-1927 hydrographic dataset reveals centennial full-depth changes in the Atlantic Ocean. Geophys. Res. Lett., 40, 2236−2241, https://doi.org/10.1002/grl.50503.
Johnson, G., and Coauthors, 2018: Ocean heat content [in State of the Climate in 2017]. Bull. Amer. Meteor. Soc., 99, S72−S77.
Hansen, J., M. Sato, P. Kharecha, and K. Von Schuckmann, 2011: Earth’s energy imbalance and implications. Atmospheric Chemistry and Physics, 11, 13 421−13 449,
Holbrook, N. J., and Coauthors, 2019: A global assessment of marine heatwaves and their drivers. Nature Communications, 10, 2624, https://doi.org/10.1038/s41467-019-10206-z.
Hu, S. N., and A. V. Fedorov, 2020: Indian Ocean warming as a driver of the North Atlantic warming hole. Nature Communications, 11, 4785, https://doi.org/10.1038/s41467-020-18522-5.
IPCC, 2013: Climate Change 2013: The physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, 1535 pp.
IPCC, 2019: Summary for policymakers. IPCC Special Report on the Ocean and Cryosphere in a Changing Climate, H.-O. Pörtner et al., Eds. In press
IPCC, 2021: Summary for policymakers. Climate Change 2021: The Physical Science Basis. Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change, V. Masson-Delmotte et al., Eds., IPCC.
Kay, J. E., and Coauthors, 2015: The Community Earth System Model (CESM) large ensemble project: A community resource for studying climate change in the presence of internal climate variability. Bull. Amer. Meteor. Soc., 96(8), 1333−1349, https://doi.org/10.1175/BAMS-D-13-00255.1.
Keil, P., T. Mauritsen, J. Jungclaus, C. Hedemann, D. Olonscheck, and R. Ghosh, 2020: Multiple drivers of the North Atlantic warming hole. Nature Climate Change, 10, 667−671, https://doi.org/10.1038/s41558-020-0819-8.
Lee, S.-K., W. Park, M. O. Baringer, A. L. Gordon, B. Huber, and Y. Y. Liu, 2015: Pacific origin of the abrupt increase in Indian Ocean heat content during the warming hiatus. Nature Geoscience, 8(6), 445−449, https://doi.org/10.1038/ngeo2438.
Levitus, S., J. I. Antonov, T. P. Boyer, R. A. Locarnini, H. E. Garcia, and A. V. Mishonov, 2009: Global ocean heat content 1955–2008 in light of recently revealed instrumentation problems. Geophys. Res. Lett., 36, L07608, https://doi.org/10.1029/2008GL037155.
Levitus, S., and Coauthors, 2012: World ocean heat content and thermosteric sea level change (0−2000 m), 1955−2010. Geophys Res. Lett., 39, L10603, https://doi.org/10.1029/2012GL051106.
Li, G. C., L. J. Cheng, J. Zhu, K. E. Trenberth, M. E. Mann, and J. P. Abraham, 2020a: Increasing ocean stratification over the past half-century. Nature Climate Change, 10, 1116−1123, https://doi.org/10.1038/s41558-020-00918-2.
Li, L. F., M. S. Lozier, and F. L. Li, 2021: Century-long cooling trend in subpolar North Atlantic forced by atmosphere: An alternative explanation. Climate Dyn., in press,
Li, Y. L., W. Q. Han, A. X. Hu, G. A. Meehl, and F. Wang, 2018: Multi-decadal changes of the Upper Indian Ocean heat content during 1965–2016. J Climate, 31(19), 7863−7884, https://doi.org/10.1175/JCLI-D-18-0116.1.
Li, Y. L., W. Q. Han, F. Wang, L. Zhang, and J. Duan, 2020: Vertical structure of the Upper-Indian Ocean thermal variability. J. Climate, 33(17), 7233−7253, https://doi.org/10.1175/JCLI-D-19-0851.1.
Marshall, J., and K. Speer, 2012: Closure of the meridional overturning circulation through Southern Ocean upwelling. Nature Geoscience, 5(3), 171−180, https://doi.org/10.1038/Ngeo1391.
Piecuch, C. G., 2020: Likely weakening of the Florida Current during the past century revealed by sea-level observations. Nature Communications, 11, 3973, https://doi.org/10.1038/s41467-020-17761-w.
Pinardi, N., and Coauthors, 2015: Mediterranean Sea large-scale low-frequency ocean variability and water mass formation rates from 1987 to 2007: A retrospective analysis. Progress in Oceanography, 132, 318−332, https://doi.org/10.1016/j.pocean.2013.11.003.
Purich, A., M. H. England, W. J. Cai, A. Sullivan, and P. J. Durack, 2018: Impacts of broad-scale surface freshening of the Southern Ocean in a coupled climate model. J. Climate, 31(7), 2613−2632, https://doi.org/10.1175/JCLI-D-17-0092.1.
Purkey, S. G., and G. C. Johnson, 2010: Warming of global abyssal and deep southern ocean waters between the 1990s and 2000s: Contributions to global heat and sea level rise budgets. J. Climate, 23, 6336−6351, https://doi.org/10.1175/2010JCLI3682.1.
Purkey, S. G., and G. C. Johnson, 2013: Antarctic Bottom Water warming and freshening: Contributions to sea level rise, ocean freshwater budgets, and global heat gain. J. Climate, 26(16), 6105−6122, https://doi.org/10.1175/JCLI-D-12-00834.1.
Rahmstorf, S., J. E, Box, G. Feulner, M. E. Mann, A. Robinson, S. Rutherford, and E. Schaffernicht, 2015: Exceptional twentieth-century slowdown in Atlantic Ocean overturning circulation. Nature Climate Change, 5, 475−480, https://doi.org/10.1038/nclimate2554.
Rhein, M., and Coauthors, 2013: Observations: Ocean. Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change, T. F. Stocker et al., Eds., Cambridge University Press.
Roemmich, D., J. Church, J. Gilson, D. Monselesan, P. Sutton, and S. Wijffels, 2015: Unabated planetary warming and its ocean structure since 2006. Nature Climate Change, 5(3), 240−245.
Scambos T , J. Abraham, 2015: Briefing: Antarctic ice sheet mass loss and future sea-level rise. Proceedings of the Institution of Civil Engineers – Forensic Engineering, 168, 81−84, https://doi.org/10.1680/feng.14.00014.
Scannell, H. A., G. C. Johnson, L. Thompson, J. M. Lyman, and S. C. Riser, 2020: Subsurface evolution and persistence of marine heatwaves in the Northeast Pacific. Geophys. Res. Lett., 47, e2020GL090548, https://doi.org/10.1029/2020GL090548.
Schmidtko, S., and G. C. Johnson, 2012: Multi-decadal warming and shoaling of Antarctic intermediate water. J. Climate, 25(1), 207−221, https://doi.org/10.1175/Jcli-D-11-00021.1.
Schmidtko, S., K. J. Heywood, A. F. Thompson, and S. Aoki, 2014: Multi-decadal warming of Antarctic waters. Science, 346(6214), 1227−1231, https://doi.org/10.1126/science.1256117.
Schroeder, K., J. Chiggiato, S. A. Josey, M. Borghini, S. Aracri, and S. Sparnocchia, 2017: Rapid response to climate change in a marginal sea. Scientific Reports, 7, 4065, https://doi.org/10.1038/s41598-017-04455-5.
Seidov, D., A. Mishonov, and R. Parsons, 2021: Recent warming and decadal variability of Gulf of Maine and Slope Water. Limnology and Oceanography, 66, 3472−3488, https://doi.org/10.1002/lno.11892.
Seidov, D., A. Mishonov, J. Reagan, and R. Parsons, 2017: Multi-decadal variability and climate shift in the North Atlantic Ocean. Geophys. Res. Lett., 44, 4985−4993, https://doi.org/10.1002/2017GL073644.
Seidov, D., A. Mishonov, J. Reagan, and R. Parsons, 2019: Resilience of the Gulf Stream path on decadal and longer timescales. Scientific Reports, 9, 11549, https://doi.org/10.1038/s41598-019-48011-9.
Silvy, Y., E. Guilyardi, J. B. Sallée, and P. J. Durack, 2020: Human-induced changes to the global ocean water masses and their time of emergence. Nature Climate Change, 10(11), 1030−1036, https://doi.org/10.1038/s41558-020-0878-x.
Simoncelli, S., C. Fratianni, and G. Mattia, 2019: Monitoring and long-term assessment of the Mediterranean Sea physical state through ocean reanalyses. INGV Workshop on Marine Environment, L. Sagnotti et al., Eds., Rome, IVGV, 62−64,
Simoncelli, S., N. Pinardi, C. Fratianni, C. Dubois, and G. Notarstefano, 2018: Water mass formation processes in the Mediterranean Sea over the past 30 years. Copernicus Marine Service Ocean State Report, Issue 2. K. von Schuckmann et al., Eds., s96−s100,
Smith, C. J., and P. M. Forster, 2021: Suppressed late-20th Century warming in CMIP6 models explained by forcing and feedbacks. Geophys. Res. Lett., 48, e2021GL094948, https://doi.org/10.1029/2021GL094948.
Sriver, R. L., and M. Huber, 2007: Observational evidence for an ocean heat pump induced by tropical cyclones. Nature, 447, 577−580, https://doi.org/10.1038/nature05785.
Storto, A., and Coauthors, 2019: The added value of the multi-system spread information for ocean heat content and steric sea level investigations in the CMEMS GREP ensemble reanalysis product. Climate Dyn., 53, 287−312, https://doi.org/10.1007/s00382-018-4585-5.
Swart, N. C., S. T. Gille, J. C. Fyfe, and N. P. Gillett, 2018: Recent Southern Ocean warming and freshening driven by greenhouse gas emissions and ozone depletion. Nature Geoscience, 11(11), 836−841, https://doi.org/10.1038/s41561-018-0226-1.
Trenberth, K. E., J. T. Fasullo, and M. A. Balmaseda, 2014: Earth’s energy imbalance. J. Climate, 27, 3129−3144, https://doi.org/10.1175/JCLI-D-13-00294.1.
Trenberth, K. E., A. G. Dai, R. M. Rasmussen, and D. B. Parsons, 2003: The changing character of precipitation. Bull. Amer. Meteor. Soc., 84(9), 1205−1218, https://doi.org/10.1175/BAMS-84-9-1205.
Trenberth, K. E., J. T. Fasullo, K. von Schuckmann, and L. J. Cheng, 2016: Insights into Earth’s energy imbalance from multiple sources. J. Climate, 29, 7495−7505, https://doi.org/10.1175/JCLI-D-16-0339.1.
Trenberth, K. E., L. J. Cheng, P. Jacobs, Y. X. Zhang, and J. Fasullo, 2018: Hurricane Harvey links to ocean heat content and climate change adaptation. Earth’s Future, 6, 730−744, https://doi.org/10.1029/2018EF000825.
Trenberth, K. E., G. W. Branstator, D. Karoly, A. Kumar, N.-C. Lau, and C. Ropelewski, 1998: Progress during TOGA in understanding and modeling global teleconnections associated with tropical sea surface temperatures. J. Geophys. Res.: Oceans, 103, 14 291−14 324,
Ummenhofer, C. C., S. A. Murty, J. Sprintall, T. Lee, and N. J. Abram, 2021: Heat and freshwater changes in the Indian Ocean region. Nature Reviews Earth & Environment, 2(8), 525−541, https://doi.org/10.1038/s43017-021-00192-6.
United Nations, 2021: Sustainable Development Goals. Available from https://sdgs.un.org/goals.
Volkov, D. L., S.-K. Lee, A. L. Gordon, and M. Rudko, 2020: Unprecedented reduction and quick recovery of the South Indian Ocean heat content and sea level in 2014–2018. Science Advances, 6(36), eabc1151,
von Schuckmann, K., E. Holland, P. Haugan, and P. Thomson, 2020a: Ocean science, data, and services for the UN 2030 Sustainable Development Goals. Marine Policy, 121, 104154, https://doi.org/10.1016/j.marpol.2020.104154.
von Schuckmann, K., and Coauthors, 2016a: An imperative to monitor Earth’s energy imbalance. Nature Climate Change, 6, 138−144, https://doi.org/10.1038/nclimate2876.
von Schuckmann, K., and Coauthors, 2016b: The Copernicus marine environment monitoring service ocean state report. Journal of Operational Oceanography, 9, s235−s320, https://doi.org/10.1080/1755876X.2016.1273446.
von Schuckmann, K., and Coauthors, 2020b: Heat stored in the Earth system: Where does the energy go. . Earth System Science Data, 12, 2013−2041, https://doi.org/10.5194/essd-12-2013-2020.
Wang, C. Z., 2019: Three-ocean interactions and climate variability: A review and perspective. Climate Dyn., 53, 5119−5136, https://doi.org/10.1007/s00382-019-04930-x.
Wang, X. D., C. Z. Wang, G. J. Han, W. Li, and X. R. Wu, 2014: Effects of tropical cyclones on large-scale circulation and ocean heat transport in the South China Sea. Climate Dyn., 43, 3351−3366, https://doi.org/10.1007/s00382-014-2109-5.
Wijffels, S., D. Roemmich, D. Monselesan, J. Church, and J. Gilson, 2016: Ocean temperatures chronicle the ongoing warming of Earth. Nature Climate Change, 6, 116−118, https://doi.org/10.1038/nclimate2924.
Xiao, F. A., D. X. Wang, and L. Yang, 2020: Can tropical Pacific winds enhance the footprint of the Interdecadal Pacific Oscillation on the upper-ocean heat content in the South China Sea. J. Climate, 33(10), 4419−4437, https://doi.org/10.1175/JCLI-D-19-0679.1.
Xie, S.-P., H. Annamalai, F. A. Schott, and J. P. McCreary Jr., 2002: Structure and mechanisms of south Indian Ocean climate variability. J. Climate, 15(8), 864−878, https://doi.org/10.1175/1520-0442(2002)015<0864:SAMOSI>2.0.CO;2.
Yang, L., S. Chen, C. Z. Wang, D. X. Wang, and X. Wang, 2018: Potential impact of the Pacific Decadal Oscillation and sea surface temperature in the tropical Indian Ocean–Western Pacific on the variability of typhoon landfall on the China coast. Climate Dyn., 51, 2695−2705, https://doi.org/10.1007/s00382-017-4037-7.
Yang, L. N., R. Murtugudde, L. Zhou, and P. Liang, 2020: A potential link between the Southern Ocean warming and the South Indian Ocean heat balance. J. Geophys. Res.: Oceans, 125(12), e2020JC016132, https://doi.org/10.1029/2020JC016132.