Bailey, M. P., and J. Hallett, 2009: A comprehensive habit diagram for atmospheric ice crystals: Confirmation from the laboratory, AIRS II, and other field studies. J. Atmos. Sci., 66, 2888−2899, https://doi.org/10.1175/2009JAS2883.1.
Benjamin, S. G., J. M. Brown, and T. G. Smirnova, 2016: Explicit precipitation-type diagnosis from a model using a mixed-phase bulk cloud–precipitation microphysics parameterization. Wea. Forecasting, 31, 609−619, https://doi.org/10.1175/WAF-D-15-0136.1.
Chen, S.-H., and W.-Y. Sun, 2002: A one-dimensional time dependent cloud model. J. Meteor. Soc. Japan, 80, 99−118, https://doi.org/10.2151/jmsj.80.99.
Cox, G. P., 1988: Modelling precipitation in frontal rainbands. Quart. J. Roy. Meteor. Soc., 114, 115−127, https://doi.org/10.1002/qj.49711447906.
Dawson, D. T., E. R. Mansell, Y. Jung, L. J. Wicker, M. R. Kumjian, and M. Xue, 2014: Low-level ZDR signatures in supercell forward flanks: The role of size sorting and melting of hail. J. Atmos. Sci., 71, 276−299, https://doi.org/10.1175/JAS-D-13-0118.1.
Falk, N. M., A. L. Igel, and M. R. Igel, 2019: The relative impact of ice fall speeds and microphysics parameterization complexity on supercell evolution. Mon. Wea. Rev., 147, 2403−2415, https://doi.org/10.1175/MWR-D-18-0417.1.
Fan, J. W., and Coauthors, 2017: Cloud-resolving model intercomparison of an MC3E squall line case: Part I—Convective updrafts. J. Geophys. Res., 122, 9351−9378, https://doi.org/10.1002/2017JD026622.
Ferrier, B. S., 1994: A double-moment multiple-phase four-class bulk ice scheme. Part I: Description. J. Atmos. Sci., 51, 249−280, https://doi.org/10.1175/1520-0469(1994)051<02 49:ADMMPF>2.0.CO;2.
Field, P. R., R. J. Hogan, P. R. A. Brown, A. J. Illingworth, T. W. Choularton, and R. J. Cotton, 2005: Parametrization of ice-particle size distributions for mid-latitude stratiform cloud. Quart. J. Roy. Meteor. Soc., 131, 1997−2017, https://doi.org/10.1256/qj.04.134.
Geresdi, I., 1998: Idealized simulation of the Colorado hailstorm case: Comparison of bulk and detailed microphysics. Atmos. Res., 45, 237−252, https://doi.org/10.1016/S0169-8095(97)00079-3.
Hall, W. D., 1980: A detailed microphysical model within a two-dimensional dynamic framework: Model description and preliminary results. J. Atmos. Sci., 37, 2486−2507, https://doi.org/10.1175/1520-0469(1980)037<2486:ADMMWA>2.0.CO;2.
Heikenfeld, M., B. White, L. Labbouz, and P. Stier, 2019: Aerosol effects on deep convection: The propagation of aerosol perturbations through convective cloud microphysics. Atmos. Chem. Phys., 19, 2601−2627, https://doi.org/10.5194/acp-19-2601-2019.
Heymsfield, A. J., and M. Kajikawa, 1987: An improved approach to calculating terminal velocities of plate-like crystals and graupel. J. Atmos. Sci., 44, 1088−1099, https://doi.org/10.1175/1520-0469(1987)044<1088:AIATCT>2.0.CO;2.
Hong, S.-Y., J. Dudhia, and S.-H. Chen, 2004: A revised approach to ice microphysical processes for the bulk parameterization of clouds and precipitation. Mon. Wea. Rev., 132, 103−120, https://doi.org/10.1175/1520-0493(2004)132<01 03:ARATIM>2.0.CO;2.
Jensen, A. A., J. Y. Harrington, H. Morrison, and J. A. Milbrandt, 2017: Predicting ice shape evolution in a bulk microphysics model. J. Atmos. Sci., 74, 2081−2104, https://doi.org/10.1175/JAS-D-16-0350.1.
Johnson, M., Y. Jung, D. T. Dawson II, and M. Xue, 2016: Comparison of simulated polarimetric signatures in idealized supercell storms using two-moment bulk microphysics schemes in WRF. Mon. Wea. Rev., 144, 971−996, https://doi.org/10.1175/MWR-D-15-0233.1.
Johnson, M., Y. Jung, J. A. Milbrandt, H. Morrison, and M. Xue, 2019: Effects of the representation of rimed ice in bulk microphysics schemes on polarimetric signatures. Mon. Wea. Rev., 147, 3785−3810, https://doi.org/10.1175/MWR-D-18-0398.1.
Jung, Y., G. F. Zhang, and M. Xue, 2008: Assimilation of simulated polarimetric radar data for a convective storm using the ensemble Kalman filter. Part I: Observation operators for reflectivity and polarimetric variables. Mon. Wea. Rev., 136, 2228−2245, https://doi.org/10.1175/2007MWR2083.1.
Khain, A., and B. Lynn, 2009: Simulation of a supercell storm in clean and dirty atmosphere using weather research and forecast model with spectral bin microphysics. J. Geophys. Res., 114, D19209. https://doi.org/10.1029/2009JD011827.
Khain, A., A. Pokrovsky, M. Pinsky, A. Seifert, and V. Phillips, 2004: Simulation of effects of atmospheric aerosols on deep turbulent convective clouds using a spectral microphysics mixed-phase cumulus cloud model. Part I: Model description and possible applications. J. Atmos. Sci., 61, 2963−2982, https://doi.org/10.1175/JAS-3350.1.
Khain, A., B. Lynn, and J. Shpund, 2016: High resolution WRF simulations of hurricane irene: Sensitivity to aerosols and choice of microphysical schemes. Atmos. Res., 167, 129−145, https://doi.org/10.1016/j.atmosres.2015.07.014.
Khain, A. P., and I. Sednev, 1996: Simulation of precipitation formation in the eastern Mediterranean coastal zone using a spectral microphysics cloud ensemble model. Atmos. Res., 43, 77−110, https://doi.org/10.1016/S0169-8095(96)00005-1.
Khain, A. P., and Coauthors, 2015: Representation of microphysical processes in cloud-resolving models: Spectral (bin) microphysics versus bulk parameterization. Rev. Geophys., 53, 247−322, https://doi.org/10.1002/2014RG000468.
Kumjian, M. R., and A. V. Ryzhkov, 2008: Polarimetric signatures in supercell thunderstorms. J. Appl. Meteorol. Climatol., 47, 1940−1961, https://doi.org/10.1175/2007JAMC1874.1.
Kumjian, M. R., A. P. Khain, N. Benmoshe, E. Ilotoviz, A. V. Ryzhkov, and V. T. J. Phillips, 2014: The anatomy and physics of ZDR columns: Investigating a polarimetric radar signature with a spectral bin microphysical model. J. Appl. Meteorol. Climatol., 53, 1820−1843, https://doi.org/10.1175/JAMC-D-13-0354.1.
Lin, Y.-L., R. D. Farley, and H. D. Orville, 1983: Bulk parameterization of the snow field in a cloud model. J. Climate Appl. Meteor., 22, 1065−1092, https://doi.org/10.1175/1520-0450(1983)022<1065:BPOTSF>2.0.CO;2.
Magono, C. and C. W. Lee, 1966: Meteorological classification of natural snow crystals. Journal of the Faculty of Science, Hokkaido University, 2, 321−335.
Mansell, E. R., C. L. Ziegler, and E. C. Bruning, 2010: Simulated electrification of a small thunderstorm with two-moment bulk microphysics. J. Atmos. Sci., 67, 171−194, https://doi.org/10.1175/2009JAS2965.1.
Matrosov, S. Y., R. F. Reinking, R. A. Kropfli, and B. W. Bartram, 1996: Estimation of ice hydrometeor types and shapes from radar polarization measurements. J. Atmos. Oceanic Technol., 13, 85−96, https://doi.org/10.1175/1520-0426(1996)013<0085:EOIHTA>2.0.CO;2.
Milbrandt, J. A., and M. K. Yau, 2005a: A multimoment bulk microphysics parameterization. Part I: Analysis of the role of the spectral shape parameter. J. Atmos. Sci., 62, 3051−3064, https://doi.org/10.1175/JAS3534.1.
Milbrandt, J. A., and M. K. Yau, 2005b: A multimoment bulk microphysics parameterization. Part II: A proposed three-moment closure and scheme description. J. Atmos. Sci., 62, 3065−3081, https://doi.org/10.1175/JAS3535.1.
Milbrandt, J. A., H. Morrison, D. T. Dawson II, and M. Paukert, 2021: A triple-moment representation of ice in the predicted particle properties (P3) microphysics scheme. J. Atmos. Sci., 78, 439−458, https://doi.org/10.1175/JAS-D-20-0084.1.
Mitchell, D. L., R. Y. Zhang, and R. L. Pitter, 1990: Mass-dimensional relationships for ice particles and the influence of riming on snowfall rates. J. Appl. Meteorol., 29, 153−163, https://doi.org/10.1175/1520-0450(1990)029<0153:MDRFIP>2.0.CO;2.
Morrison, H., and J. A. Milbrandt, 2015: Parameterization of cloud microphysics based on the prediction of bulk ice particle properties. Part I: Scheme description and idealized tests. J. Atmos. Sci., 72, 287−311, https://doi.org/10.1175/JAS-D-14-0065.1.
Morrison, H., G. Thompson, and V. Tatarskii, 2009: Impact of cloud microphysics on the development of trailing stratiform precipitation in a simulated squall line: Comparison of one- and two-moment schemes. Mon. Wea. Rev., 137, 991−1007, https://doi.org/10.1175/2008MWR2556.1.
Morrison, H., and Coauthors, 2020: Confronting the challenge of modeling cloud and precipitation microphysics. Journal of Advances in Modeling Earth Systems, 12, e2019MS001689. https://doi.org/10.1029/2019MS001689.
Pruppacher, H. R., and J. D. Klett, 2010: Microphysics of Clouds and Precipitation. 2nd ed,. Springer, 954 pp. https://doi.org/10.1007/978-0-306-48100-0.
Reisin, T., Z. Levin, and S. Tzivion, 1996: Rain production in convective clouds as simulated in an axisymmetric model with detailed microphysics. Part I: Description of the model. J. Atmos. Sci., 53, 497−519, https://doi.org/10.1175/1520-0469(1996)053<0497:RPICCA>2.0.CO;2.
Ryzhkov, A., M. Pinsky, A. Pokrovsky, and A. Khain, 2011: Polarimetric radar observation operator for a cloud model with spectral microphysics. J. Appl. Meteorol. Climatol., 50, 873−894, https://doi.org/10.1175/2010JAMC2363.1.
Shpund, J., and Coauthors, 2019: Simulating a mesoscale convective system using WRF with a new spectral bin microphysics: 1: Hail vs graupel. J. Geophys. Res. Atmos., 124 , 14 072−14 101, https://doi.org/10.1029/2019JD030576.
Skamarock, W. C., and Coauthors, 2008: A description of the advanced research WRF version 3. NCAR Tech. Note NCAR/TN-475+STR, 125 pp. https://doi.org/10.5065/D68S4MVH.
Takahashi, T., 1976: Hail in an axisymmetric cloud model. J. Atmos. Sci., 33, 1579−1601, https://doi.org/10.1175/1520-0469(1976)033<1579:HIAACM>2.0.CO;2.
Thompson, G., P. R. Field, R. M. Rasmussen, and W. D. Hall, 2008: Explicit forecasts of winter precipitation using an improved bulk microphysics scheme. Part II: Implementation of a new snow parameterization. Mon. Wea. Rev., 136, 5095−5115, https://doi.org/10.1175/2008MWR2387.1.
Ulbrich, C. W., 1983: Natural variations in the analytical form of the raindrop size distribution. J. Appl. Meteorol. Climatol., 22, 1764−1775, https://doi.org/10.1175/1520-0450(1983)022<1764:NVITAF>2.0.CO;2.
Van Weverberg, K., and Coauthors, 2013: The role of cloud microphysics parameterization in the simulation of mesoscale convective system clouds and precipitation in the tropical western Pacific. J. Atmos. Sci., 70, 1104−1128, https://doi.org/10.1175/JAS-D-12-0104.1.
Vivekanandan, J., W. M. Adams, and V. N. Bringi, 1991: Rigorous approach to polarimetric radar modeling of hydrometeor orientation distributions. J. Appl. Meteorol., 30, 1053−1063, https://doi.org/10.1175/1520-0450(1991)030<1053:RATPRM>2.0.CO;2.
Waterman, P. C., 1969: Scattering by dielectric obstacles. Alta Frequncia, 38, 348−352.
Weisman, M. L., and J. B. Klemp, 1982: The dependence of numerically simulated convective storms on vertical wind shear and buoyancy. Mon. Wea. Rev., 110, 504−520, https://doi.org/10.1175/1520-0493(1982)110<0504:TDONSC>2.0.CO;2.
Xue, L., and Coauthors, 2017: Idealized simulations of a squall line from the MC3E field campaign applying three bin microphysics schemes: Dynamic and thermodynamic structure. Mon. Wea. Rev., 145, 4789−4812, https://doi.org/10.1175/MWR-D-16-0385.1.
Young, K. C., 1974: A numerical simulation of wintertime, orographic precipitation: Part I. Description of model microphysics and numerical techniques. J. Atmos. Sci., 31, 1735−1748, https://doi.org/10.1175/1520-0469(1974)031<1735:ANSOWO>2.0.CO;2.
Zrnic, D. S., N. Balakrishnan, C. L. Ziegler, V. N. Bringi, K. Aydin, and T. Matejka, 1993: Polarimetric signatures in the stratiform region of a mesoscale convective system. J. Appl. Meteorol. Climatol., 32, 678−693, https://doi.org/10.1175/1520-0450(1993)032<0678:PSITSR>2.0.CO;2.