Bao, M., 2007: The statistical analysis of the persistent heavy rain in the last 50 years over China and their backgrounds on the large scale circulation. Chinese Journal of Atmospheric Science, 31, 779−792, https://doi.org/10.3878/j.issn.1006-9895.2007.05.03. (in Chinese with English abstract
Cao, X., X. J. Ren, X. Q. Yang, and J. B. Fang, 2012: The quasi-biweekly oscillation characteristics of persistent severe rain and its general circulation anomaly over southeast China from May to August. Acta Meteorologica Sinica, 70, 766−778, https://doi.org/10.11676/qxxb2012.062. (in Chinese with English abstract
Chen, G. H., and C.-H. Sui, 2010: Characteristics and origin of quasi-biweekly oscillation over the western North Pacific during boreal summer. J. Geophys. Res., 115, D14113, https://doi.org/10.1029/2009JD013389.
Chen, M. Y., W. Shi, P. P. Xie, V. B. S. Silva, V. E. Kousky, R. W. Higgins, and J. E. Janowiak, 2008: Assessing objective techniques for gauge-based analyses of global daily precipitation. J. Geophys. Res., 2008, 113, D04110, https://doi.org/10.1029/2007JD009132.
Chen, X. C., F. Q. Zhang, and K. Zhao, 2016: Diurnal variations of the land-sea breeze and its related precipitation over South China. J. Atmos. Sci., 73, 4793−4815, https://doi.org/10.1175/JAS-D-16-0106.1.
Chen, Y., and P. M. Zhai, 2013: Persistent extreme precipitation events in China during 1951−2010. Climate Research, 57, 143−155, https://doi.org/10.3354/cr01171.
Dee, D. P., and Coauthors, 2011: The ERA-Interim reanalysis: Configuration and performance of the data assimilation system. Quart. J. Roy. Meteor. Soc., 137, 553−597, https://doi.org/10.1002/qj.828.
Ding, Y. H., 2005: Advanced Synoptic Meteorology. 2nd ed., China Meteorological Press, 583 pp. (in Chinese)
Ding, Y. H., 2019: The major advances and development process of the theory of heavy rainfalls in China. Torrential Rain and Disasters, 38, 395−406, https://doi.org/10.3969/j.issn.1004-9045.2019.05.001. (in Chinese with English abstract
Du, Y., and G. X. Chen, 2019a: Climatology of low-level jets and their impact on rainfall over southern China during the early-summer rainy season. J. Climate, 32, 8813−8833, https://doi.org/10.1175/JCLI-D-19-0306.1.
Du, Y., and G. X. Chen, 2019b: Heavy rainfall associated with double low-level jets over Southern China. Part II: Convection initiation. Mon. Wea. Rev., 147, 543−565, https://doi.org/10.1175/MWR-D-18-0102.1.
Du, Y., G. X. Chen, B. Han, C. Y. Mai, L. Q. Bai, and M. H. Li, 2020a: Convection initiation and growth at the coast of South China. Part I: Effect of the marine boundary layer jet. Mon. Wea. Rev., 148, 3847−3869, https://doi.org/10.1175/MWR-D-20-0089.1.
Du, Y., G. X. Chen, B. Han, L. Q. Bai, and M. H. Li, 2020b: Convection initiation and growth at the coast of South China. Part II: Effects of the terrain, coastline, and cold pools. Mon. Wea. Rev, 148, 3871−3892, https://doi.org/10.1175/MWR-D-20-0090.1.
Gao, M. N., J. Yang, B. Wang, S. Y. Zhou, D. Y. Gong, and S.-J. Kim, 2018: How are heat waves over Yangtze River valley associated with atmospheric quasi-biweekly oscillation. Climate Dyn., 51, 4421−4437, https://doi.org/10.1007/s00382-017-3526-z.
Gao, Z. B., J. S. Zhu, Y. Guo, N. Luo, Y. Fu, and T. T. Wang, 2021: Impact of land surface processes on a record-breaking rainfall event on May 06–07, 2017, in Guangzhou, China. J. Geophys. Res., 126, e2020JD032997, https://doi.org/10.1029/2020JD032997.
Gu, D. J., Z. P. Ji, X. R. Gao, G. F. Sun, and J. G. Xie, 2013: The relationship between the rainfall during the annually first rainy season in Guangdong and the quasi-biweekly oscillation of wind field in the north of South China Sea. Journal of Tropical Meteorology, 29, 189−197, https://doi.org/10.3969/j.issn.1004-4965.2013.02.002. (in Chinese with English abstract
He, L. F., T. Chen, and Q. Kong, 2016: A review of studies on prefrontal torrential rain in South China. Journal of Applied Meteorological Science, 27, 559−569, https://doi.org/10.11898/1001-7313.20160505. (in Chinese with English abstract
Hong, W., and X. J. Ren, 2013: Persistent heavy rainfall over South China during May-August: Subseasonal anomalies of circulation and sea surface temperature. Acta Meteorologica Sinica, 27, 769−787, https://doi.org/10.1007/s13351-013-0607-8.
Huang, L., Y. L. Luo, and D.-L. Zhang, 2018: The relationship between anomalous presummer extreme rainfall over South China and synoptic disturbances. J. Geophys. Res., 123, 3395−3413, https://doi.org/10.1002/2017JD028106.
Huang, Y. J., Y. B. Liu, Y. W. Liu, H. Y. Li, and J. C. Knievel, 2019: Mechanisms for a record-breaking rainfall in the coastal metropolitan city of Guangzhou, China: Observation analysis and nested very large eddy simulation with the WRF model. J. Geophys. Res., 124, 1370−1391, https://doi.org/10.1029/2018JD029668.
Huffman, G. J., and D. T. Bolvin, 2018: TRMM and other data precipitation data set documentation. [Available online from https://docserver.gesdisc.eosdis.nasa.gov/public/project/GPM/3B42_3B43_doc_V7.pdf]
Huffman, G J., R. F. Adler, D. T. Bolvin, and E. J. Nelkin. 2010: The TRMM multi-satellite precipitation analysis (TMPA). Satellite Rainfall Applications for Surface Hydrology, M. Gebremichael and F. Hossain, Eds., Springer, 3−22, https://doi.org/10.1007/978-90-481-2915-7_1.
Huffman, G. J., D. T. Bolvin, E. J. Nelkin, and R. F. Adler, 2016: TRMM (TMPA) Precipitation L3 1 day 0.25 degree x 0.25 degree V7. A. Savtchenko, Ed., Goddard Earth Sciences Data and Information Services Center (GES DISC). [Available online from https://disc.gsfc.nasa.gov/datasets/TRMM_3B42_Daily_7/summary]
Jiang, Z. N, D.-L. Zhang, and H. B. Liu, 2020: Roles of synoptic to quasi-monthly disturbances in generating two pre-summer heavy rainfall episodes over South China. Adv. Atmos. Sci., 37, 211−228, https://doi.org/10.1007/s00376-019-8156-4.
Jiang, Z. N., D.-L. Zhang, R. D. Xia, and T. T. Qian, 2017: Diurnal variations of presummer rainfall over southern China. J. Climate, 30, 755−773, https://doi.org/10.1175/JCLI-D-15-0666.1.
Joyce, R. J., J. E. Janowiak, P. A. Arkin, and P. P. Xie, 2004: CMORPH: A method that produces global precipitation estimates from passive microwave and infrared data at high spatial and temporal resolution. Journal of Hydrometeorology, 5, 487−503, https://doi.org/10.1175/1525-7541(2004)005<0487:CAMTPG>2.0.CO;2.
Li, C. H., T. M. Li, A. L. Lin, D. J. Gu, and B. Zheng, 2015: Relationship between summer rainfall anomalies and sub-seasonal oscillations in South China. Climate Dyn., 44, 423−439, https://doi.org/10.1007/s00382-014-2172-y.
Li, R. C. Y., and W. Zhou, 2015: Multiscale control of summertime persistent heavy precipitation events over South China in association with synoptic, intraseasonal, and low-frequency background. Climate Dyn., 45, 1043−1057, https://doi.org/10.1007/s00382-014-2347-6.
Liu, H. B., J. Yang, D.-L. Zhang, and B. Wang, 2014: Roles of synoptic to quasi-biweekly disturbances in generating the Summer 2003 heavy rainfall in East China. Mon. Wea. Rev., 142, 886−904, https://doi.org/10.1175/MWR-D-13-00055.1.
Liu, R. X., J. H. Sun, J. Wei, and S. M. Fu, 2016: Classification of persistent heavy rainfall events over South China and associated moisture source analysis. J. Meteor. Res., 30, 678−693, https://doi.org/10.1007/s13351-016-6042-x.
Luo, Y. L., R. D. Xia, and J. C. L. Chan, 2020: Characteristics, physical mechanisms, and prediction of pre-summer rainfall over South China: Research progress during 2008-2019. J. Meteor. Soc. Japan, 98, 19−42, https://doi.org/10.2151/jmsj.2020-002.
Luo, Y. L., and Coauthors, 2017: The Southern China monsoon rainfall experiment (SCMREX). Bull. Amer. Meteor. Soc., 98, 999−1013, https://doi.org/10.1175/BAMS-D-15-00235.1.
Mao, J. Y., and G. X. Wu, 2006: Intraseasonal variations of the Yangtze rainfall and its related atmospheric circulation features during the 1991 summer. Climate Dyn., 27, 815−830, https://doi.org/10.1007/s00382-006-0164-2.
Mao, J. Y., and J. C. L. Chan, 2005: Intraseasonal variability of the South China Sea summer monsoon. J. Climate, 18, 2388−2402, https://doi.org/10.1175/JCLI3395.1.
Miao, R., M. Wen, R. H. Zhang, and L. Li, 2019: The influence of wave trains in mid-high latitudes on persistent heavy rain during the first rainy season over South China. Climate Dyn., 53, 2949−2968, https://doi.org/10.1007/s00382-019-04670-y.
Pan, W. J., J. Y. Mao, and G. X. Wu, 2013: Characteristics and Mechanism of the 10–20-Day oscillation of spring rainfall over southern China. J. Climate, 26, 5072−5087, https://doi.org/10.1175/JCLI-D-12-00618.1.
Philipp, A., and Coauthors, 2010: Cost733cat–A database of weather and circulation type classifications. Physics and Chemistry of the Earth, Parts A/B/C, 35, 360−373, https://doi.org/10.1016/j.pce.2009.12.010.
Tabari, H., 2020: Climate change impact on flood and extreme precipitation increases with water availability. Scientific Reports, 10, 13768, https://doi.org/10.1038/s41598-020-70816-2.
Tang, T. Y., C.-S. Wu, A.-Y. Wang, E.-B. Hou, and H.-B. Luo, 2007: An observational study of interaseasonal variations over Guangdong Province China during the rainy season of 1999. Journal of Tropical Meteorology, 23, 683−689, https://doi.org/10.3969/j.issn.1004-4965.2007.06.025. (in Chinese with English abstract
Wang, B., 1992: The vertical structure and development of the ENSO anomaly mode during 1979−1989. Journal of the Atmospheric Sciences, 49, 698−712, https://doi.org/10.1175/1520-0469(1992)049<0698:TVSADO>2.0.CO;2.
Wang, H. J., J. H. Sun, S. X. Zhao, and J. Wei, 2016: The multiscale factors favorable for a persistent heavy rain event over Hainan Island in October 2010. Journal of Meteorological Research, 30, 496−512, https://doi.org/10.1007/s13351-016-6005-2.
Wang, X., and G. J. Zhang, 2019: Evaluation of the quasi-biweekly oscillation over the South China Sea in early and late summer in CAM5. J. Climate, 32, 69−84, https://doi.org/10.1175/JCLI-D-18-0072.1.
Wu, M. W., Y. L. Luo, F. Chen, and W. K. Wong, 2019: Observed link of extreme hourly precipitation changes to urbanization over coastal South China. J. Appl. Meteor. Climatol., 58, 1799−1819, https://doi.org/10.1175/JAMC-D-18-0284.1.
Xie, P. P., R. Joyce, S. R. Wu, S. H. Yoo, Y. Yarosh, F. Y. Sun, and R. Lin, 2017: Reprocessed, bias-corrected CMORPH global high-resolution precipitation estimates from 1998. Journal of Hydrometeorology, 18, 1617−1641, https://doi.org/10.1175/JHM-D-16-0168.1.
Yang, J., B. Wang, B. Wang, and Q. Bao, 2010: Biweekly and 21-30-day variations of the subtropical summer monsoon rainfall over the lower reach of the Yangtze River Basin. J. Climate, 23, 1146−1159, https://doi.org/10.1175/2009jcli3005.1.
Yin, J. F., D. L. Zhang, Y. L. Luo, and R. Y. Ma, 2020: On the extreme rainfall event of 7 May 2017 over the coastal city of Guangzhou. Part I: Impacts of urbanization and orography. Mon. Wea. Rev., 148, 955−979, https://doi.org/10.1175/MWR-D-19-0212.1.
Zhang, C., X. G. Huang, J. F. Fei, X. Luo, and Y. Zhou, 2021: Spatiotemporal characteristics and associated synoptic patterns of extremely persistent heavy rainfall in Southern China. J. Geophys. Res., 126, e2020JD033253, https://doi.org/10.1029/2020JD033253.
Zhang, Y. C., J. H. Sun, and S. M. Fu, 2017: Main energy paths and energy cascade processes of the two types of persistent heavy rainfall events over the Yangtze River-Huaihe River Basin. Adv. Atmos. Sci., 34, 129−143, https://doi.org/10.1007/s00376-016-6117-8.
Zhou, W., and J. C. L. Chan, 2005: Intraseasonal oscillations and the South China Sea summer monsoon onset. International Journal of Climatology, 25, 1585−1609, https://doi.org/10.1002/joc.1209.