Banta, R. M., and Coauthors, 2011: Dependence of daily peak O3 concentrations near Houston, Texas on environmental factors: Wind speed, temperature, and boundary-layer depth. Atmos. Environ., 45, 162−173, https://doi.org/10.1016/j.atmosenv.2010.09.030.
Butler, T., A. Lupascu, and A. Nalam, 2020: Attribution of ground-level ozone to anthropogenic and natural sources of nitrogen oxides and reactive carbon in a global chemical transport model. Atmospheric Chemistry and Physics, 20, 10 707−10 731, https://doi.org/10.5194/acp-20-10707-2020.
Cao, B. F., and Z. C. Yin, 2020: Future atmospheric circulations benefit ozone pollution control in Beijing-Tianjin-Hebei with global warming. Science of the Total Environment, 743, 140645, https://doi.org/10.1016/j.scitotenv.2020.140645.
Coates, J., K. A. Mar, N. Ojha, and T. M. Butler, 2016: The influence of temperature on ozone production under varying NOx conditions–a modelling study. Atmospheric Chemistry and Physics, 16, 11 601−11 615, https://doi.org/10.5194/acp-16-11601-2016.
Cooper, O. R., R. S. Gao, D. Tarasick, T. Leblanc, and C. Sweeney, 2012: Long-term ozone trends at rural ozone monitoring sites across the United States, 1990−2010. J. Geophys. Res., 117, D22307, https://doi.org/10.1029/2012JD018261.
Dang, R. J., and H. Liao, 2019: Radiative forcing and health impact of aerosols and ozone in China as the consequence of clean air actions over 2012−2017. Geophys. Res. Lett., 46, 12 511−12 519, https://doi.org/10.1029/2019GL084605.
Dang, R. J., H. Liao, and Y. Fu, 2021: Quantifying the anthropogenic and meteorological influences on summertime surface ozone in China over 2012-2017. Science of the Total Environment, 754, 142394,
Ding, D., J. Xing, S. X. Wang, X. Chang, and J. M. Hao, 2019: Impacts of emissions and meteorological changes on China’s ozone pollution in the warm seasons of 2013 and 2017. Frontiers of Environmental Science & Engineering, 13, 76, https://doi.org/10.1007/s11783-019-1160-1.
Dong, Y. M., J. Li, J. P. Guo, Z. J. Jiang, Y. Q. Chu, L. Chang, Y. Yang, and H. Liao, 2020: The impact of synoptic patterns on summertime ozone pollution in the North China Plain. Science of the Total Environment, 735, 139559, https://doi.org/10.1016/j.scitotenv.2020.139559.
Foley, K. M., C. Hogrefe, G. Pouliot, N. Possiel, S. J. Roselle, H. Simon, and B. Timin, 2015: Dynamic evaluation of CMAQ part I: Separating the effects of changing emissions and changing meteorology on ozone levels between 2002 and 2005 in the eastern US. Atmos. Environ., 103, 247−255, https://doi.org/10.1016/j.atmosenv.2014.12.038.
Fu, T. M., and H. Tian, 2019: Climate change penalty to ozone air quality: Review of current understandings and knowledge gaps. Current Pollution Reports, 5, 159−171, https://doi.org/10.1007/s40726-019-00115-6.
Gaudel, A., and Coauthors, 2020: Aircraft observations since the 1990s reveal increases of tropospheric ozone at multiple locations across the Northern Hemisphere. Science Advances, 6, eaba8272, https://doi.org/10.1126/sciadv.aba8272.
Gong, C., and H. Liao, 2019: A typical weather pattern for ozone pollution events in North China. Atmospheric Chemistry and Physics, 19, 13 725−13 740, https://doi.org/10.5194/acp-19-13725-2019.
Grell, G. A., S. E. Peckham, R. Schmitz, S. A. McKeen, G. Frost, W. C. Skamarock, and B. Eder, 2005: Fully coupled “online” chemistry within the WRF model. Atmos. Environ., 39, 6957−6975, https://doi.org/10.1016/j.atmosenv.2005.04.027.
Haman, C. L., E. Couzo, J. H. Flynn, W. Vizuete, B. Heffron, and B. L. Lefer, 2014: Relationship between boundary layer heights and growth rates with ground-level ozone in Houston, Texas. J. Geophys. Res., 119, 6230−6245, https://doi.org/10.1002/2013JD020473.
Han, H., J. Liu, L. Shu, T. J. Wang, and H. L. Yuan, 2020: Local and synoptic meteorological influences on daily variability in summertime surface ozone in eastern China. Atmospheric Chemistry and Physics, 20, 203−222, https://doi.org/10.5194/acp-20-203-2020.
Hsu, K.-J., 2007: Relationships between ten-year trends of tropospheric ozone and temperature over Taiwan. Science of the Total Environment, 374, 135−142, https://doi.org/10.1016/j.scitotenv.2007.01.003.
Im, U., and Coauthors, 2011: The impact of temperature changes on summer time ozone and its precursors in the eastern Mediterranean. Atmospheric Chemistry and Physics, 11, 3847−3864, https://doi.org/10.5194/acp-11-3847-2011.
Jing, P., Z. F. Lu, J. Xing, D. G. Streets, Q. Tan, T. O’Brien, and J. Kamberos, 2014: Response of the summertime ground-level ozone trend in the Chicago area to emission controls and temperature changes, 2005−2013. Atmos. Environ., 99, 630−640, https://doi.org/10.1016/j.atmosenv.2014.10.035.
Kayes, I., S. A. Shahriar, K. Hasan, M. Akhter, M. M. Kabir, and M. A. Salam, 2019: The relationships between meteorological parameters and air pollutants in an urban environment. Global Journal of Environmental Science and Management, 5, 265−278, https://doi.org/10.22034/gjesm.2019.03.01.
Kovač-Andrić, E., J. Brana, and V. Gvozdić, 2009: Impact of meteorological factors on ozone concentrations modelled by time series analysis and multivariate statistical methods. Ecological Informatics, 4, 117−122, https://doi.org/10.1016/j.ecoinf.2009.01.002.
Le, T. H., Y. Wang, L. Liu, J. N. Yang, Y. L. Yung, G. H. Li, and J. H. Seinfeld, 2020: Unexpected air pollution with marked emission reductions during the COVID-19 outbreak in China. Science, 369, 702−706, https://doi.org/10.1126/science.abb7431.
Lee, J.-B., and Coauthors, 2015: Projections of summertime ozone concentration over East Asia under multiple IPCC SRES emission scenarios. Atmos. Environ., 106, 335−346, https://doi.org/10.1016/j.atmosenv.2015.02.019.
Lee, Y. C., D. T. Shindell, G. Faluvegi, M. Wenig, Y. F. Lam, Z. Ning, S. Hao, and C. S. Lai, 2014: Increase of ozone concentrations, its temperature sensitivity and the precursor factor in South China. Tellus B: Chemical and Physical Meteorology, 66, 23455, https://doi.org/10.3402/tellusb.v66.23455.
Li, K., D. J. Jacob, H. Liao, L. Shen, Q. Zhang, and K. H. Bates, 2019: Anthropogenic drivers of 2013–2017 trends in summer surface ozone in China. Proceedings of the National Academy of Sciences of the United States of America, 116, 422−427, https://doi.org/10.1073/pnas.1812168116.
Li, K., D. J. Jacob, L. Shen, X. Lu, I. De Smedt, and H. Liao, 2020: Increases in surface ozone pollution in China from 2013 to 2019: Anthropogenic and meteorological influences. Atmospheric Chemistry and Physics, 20, 11 423−11 433, https://doi.org/10.5194/acp-20-11423-2020.
Li, Y., A. K. H. Lau, J. C. H. Fung, J. Y. Zheng, and S. Liu, 2013: Importance of NOx control for peak ozone reduction in the Pearl River Delta region. J. Geophys. Res., 118, 9428−9443, https://doi.org/10.1002/jgrd.50659.
Liao, W. H., L. L. Wu, S. Z. Zhou, X. M. Wang, and D. L. Chen, 2021: Impact of synoptic weather types on ground-level ozone concentrations in Guangzhou, China. Asia-Pacific Journal of Atmospheric Sciences, 57, 169−180, https://doi.org/10.1007/s13143-020-00186-2.
Liao, Z. H., M. Gao, J. R. Sun, and S. J. Fan, 2017: The impact of synoptic circulation on air quality and pollution-related human health in the Yangtze River Delta region. Science of the Total Environment, 607−608, 838−846, https://doi.org/10.1016/j.scitotenv.2017.07.031.
Liu, J. D., and Coauthors, 2019: Quantifying the impact of synoptic circulation patterns on ozone variability in northern China from April to October 2013–2017. Atmospheric Chemistry and Physics, 19, 14 477−14 492, https://doi.org/10.5194/acp-19-14477-2019.
Liu, Y. M., and T. Wang, 2020a: Worsening urban ozone pollution in China from 2013 to 2017–Part 1: The complex and varying roles of meteorology. Atmospheric Chemistry and Physics, 20, 6305−6321, https://doi.org/10.5194/acp-20-6305-2020.
Liu, Y. M., and T. Wang, 2020b: Worsening urban ozone pollution in China from 2013 to 2017–Part 2: The effects of emission changes and implications for multi-pollutant control. Atmospheric Chemistry and Physics, 20, 6323−6337, https://doi.org/10.5194/acp-20-6323-2020.
Lou, S. J., H. Liao, Y. Yang, and Q. Mu, 2015: Simulation of the interannual variations of tropospheric ozone over China: Roles of variations in meteorological parameters and anthropogenic emissions. Atmos. Environ., 122, 839−851, https://doi.org/10.1016/j.atmosenv.2015.08.081.
Lu, H.-C., and T.-S. Chang, 2005: Meteorologically adjusted trends of daily maximum ozone concentrations in Taipei, Taiwan. Atmos. Environ., 39, 6491−6501, https://doi.org/10.1016/j.atmosenv.2005.06.007.
Lu, X., and Coauthors, 2018: Severe surface ozone pollution in China: A global perspective. Environmental Science & Technology Letters, 5, 487−494, https://doi.org/10.1021/acs.estlett.8b00366.
Lu, X., and Coauthors, 2019a: Exploring 2016-2017 surface ozone pollution over China: Source contributions and meteorological influences. Atmospheric Chemistry and Physics, 19, 8339−8361, https://doi.org/10.5194/acp-19-8339-2019.
Lu, X., L. Zhang, and L. Shen, 2019b: Meteorology and climate influences on tropospheric ozone: A review of natural sources, chemistry, and transport patterns. Current Pollution Reports, 5, 238−260, https://doi.org/10.1007/s40726-019-00118-3.
Lu, X., L. Zhang, X. L. Wang, M. Gao, K. Li, Y. Z. Zhang, X. Yue, and Y. H. Zhang, 2020: Rapid increases in warm-season surface ozone and resulting health impact in China since 2013. Environmental Science & Technology Letters, 7, 240--247,
Ma, M. R., W. H. Chen, S. G. Jia, M. Chang, B. Q. Zhong, and X. M. Wang, 2020: A new method for quantification of regional nitrogen emission-Deposition transmission in China. Atmos. Environ., 227, 117401, https://doi.org/10.1016/j.atmosenv.2020.117401.
Ma, Z. Q., J. Xu, W. J. Quan, Z. Y. Zhang, W. L. Lin, and X. B. Xu, 2016: Significant increase of surface ozone at a rural site, north of eastern China. Atmospheric Chemistry and Physics, 16, 3969−3977, https://doi.org/10.5194/acp-16-3969-2016.
Miao, Y. C., J. Li, S. G. Miao, H. Z. Che, Y. Q. Wang, X. Y. Zhang, R. Zhu, and S. H. Liu, 2019: Interaction between planetary boundary layer and PM2.5 pollution in megacities in China: A review. Current Pollution Reports, 5, 261−271, https://doi.org/10.1007/s40726-019-00124-5.
General Administration of Quality Supervision, Inspection and Quarantine of the People's Republic of China, and Standardization Administration, 2016: Ambient air quality standard: GB 3095−2012. Beijing: China Environmental Science Press. (in Chinese)
Mousavinezhad, S., Y. Choi, A. Pouyaei, M. Ghahremanloo, and D. L. Nelson, 2021: A comprehensive investigation of surface ozone pollution in China, 2015−2019: Separating the contributions from meteorology and precursor emissions. Atmospheric Research, 257, 105599, https://doi.org/10.1016/j.atmosres.2021.105599.
Ordóñez, C., J. M. Garrido-Perez, and R. García-Herrera, 2020: Early spring near-surface ozone in Europe during the COVID-19 shutdown: Meteorological effects outweigh emission changes. Science of the Total Environment, 747, 141322, https://doi.org/10.1016/j.scitotenv.2020.141322.
Otero, N., and Coauthors, 2018: A multi-model comparison of meteorological drivers of surface ozone over Europe. Atmospheric Chemistry and Physics, 18, 12 269−12 288, https://doi.org/10.5194/acp-18-12269-2018.
Paoletti, E., A. De Marco, D. C. S. Beddows, R. M. Harrison, and W. J. Manning, 2014: Ozone levels in European and USA cities are increasing more than at rural sites, while peak values are decreasing. Environmental Pollution, 192, 295−299, https://doi.org/10.1016/j.envpol.2014.04.040.
Peterson, J. T., and E. C. Flowers, 1977: Interactions between air pollution and solar radiation. Solar Energy, 19, 23−32, https://doi.org/10.1016/0038-092X(77)90085-8.
Pusede, S. E., A. L. Steiner, and R. C. Cohen, 2015: Temperature and recent trends in the chemistry of continental surface ozone. Chemical Reviews, 115, 3898−3918, https://doi.org/10.1021/cr5006815.
Seinfeld, J. H., and S. N. Pandis, 1998: Atmospheric Chemistry and Physics: From Air Pollution to Climate Change. Wiley-Interscience Publication, 1152 pp.
Sekiya, T., and K. Sudo, 2014: Roles of transport and chemistry processes in global ozone change on interannual and multidecadal time scales. J. Geophys. Res., 119, 4903−4921, https://doi.org/10.1002/2013JD020838.
Song, C. B., and Coauthors, 2017: Air pollution in China: Status and spatiotemporal variations. Environmental Pollution, 227, 334−347, https://doi.org/10.1016/j.envpol.2017.04.075.
Steiner, A. L., A. J. Davis, S. Sillman, R. C. Owen, A. M. Michalak, and A. M. Fiore, 2010: Observed suppression of ozone formation at extremely high temperatures due to chemical and biophysical feedbacks. Proceedings of the National Academy of Sciences of the United States of America, 107, 19 685−19 690, https://doi.org/10.1073/pnas.1008336107.
Su, T. N., Z. Q. Li, and R. Kahn, 2018: Relationships between the planetary boundary layer height and surface pollutants derived from lidar observations over China: Regional pattern and influencing factors. Atmospheric Chemistry and Physics, 18, 15 921−15 935, https://doi.org/10.5194/acp-18-15921-2018.
Wang, T., L. K. Xue, P. Brimblecombe, Y. F. Lam, L. Li, and L. Zhang, 2017: Ozone pollution in China: A review of concentrations, meteorological influences, chemical precursors, and effects. Science of the Total Environment, 575, 1582−1596, https://doi.org/10.1016/j.scitotenv.2016.10.081.
Wang, X. Y, R. E. Dickinson, L. Y. Su, C. L. Zhou, and K. C. Wang, 2018: PM2.5 pollution in China and how it has been exacerbated by terrain and meteorological conditions. Bull. Amer. Meteor. Soc., 99, 105−119, https://doi.org/10.1175/BAMS-D-16-0301.1.
Wang, Y. H., and Coauthors, 2020: Contrasting trends of PM2.5 and surface-ozone concentrations in China from 2013 to 2017. National Science Review, 7, 1331--1339,
Wang, Y. X., L. L. Shen, S. L. Wu, L. Mickley, J. W. He, and J. M. Hao, 2013: Sensitivity of surface ozone over China to 2000–2050 global changes of climate and emissions. Atmos. Environ., 75, 374−382, https://doi.org/10.1016/j.atmosenv.2013.04.045.
Wei, X. L., K.-S. Lam, C. Y. Cao, H. Li, and J. J. He, 2016: Dynamics of the typhoon Haitang related high ozone episode over Hong Kong. Advances in Meteorology, 2016, 6089154, https://doi.org/10.1155/2016/6089154.
Xu, J., and Coauthors, 2011: Measurements of ozone and its precursors in Beijing during summertime: Impact of urban plumes on ozone pollution in downwind rural areas. Atmospheric Chemistry and Physics, 11, 12 241−12 252, https://doi.org/10.5194/acp-11-12241-2011.
Yang, L. F., and Coauthors, 2019: Quantitative impacts of meteorology and precursor emission changes on the long-term trend of ambient ozone over the Pearl River Delta, China, and implications for ozone control strategy. Atmospheric Chemistry and Physics, 19, 12 901−12 916, https://doi.org/10.5194/acp-19-12901-2019.
Yang, L. F., D. P. Xie, Z. B. Yuan, Z. J. Huang, H. B. Wu, J. L. Han, L. J. Liu, and W. C. Jia, 2021: Quantification of regional ozone pollution characteristics and its temporal evolution: Insights from identification of the impacts of meteorological conditions and emissions. Atmosphere, 12, 279, https://doi.org/10.3390/atmos12020279.
Yang, Y., H. Liao, and J. Li, 2014: Impacts of the East Asian summer monsoon on interannual variations of summertime surface-layer ozone concentrations over China. Atmospheric Chemistry and Physics, 14, 6867−6879, https://doi.org/10.5194/acp-14-6867-2014.
Yu, Y. J., Z. Wang, T. He, X. Y. Meng, S. Y. Xie, and H. X. Yu, 2019: Driving factors of the significant increase in surface ozone in the Yangtze River Delta, China, during 2013–2017. Atmospheric Pollution Research, 10, 1357−1364, https://doi.org/10.1016/j.apr.2019.03.010.
Zhao, Y. B., K. Zhang, X. T. Xu, H. Z. Shen, X. Zhu, Y. X. Zhang, Y. T. Hu, and G. F. Shen, 2020: Substantial changes in nitrogen dioxide and ozone after excluding meteorological impacts during the COVID-19 outbreak in mainland China. Environmental Science & Technology Letters, 7, 402−408, https://doi.org/10.1021/acs.estlett.0c00304.
Zhao, Z. J., and Y. X. Wang, 2017: Influence of the West Pacific subtropical high on surface ozone daily variability in summertime over eastern China. Atmos. Environ., 170, 197−204, https://doi.org/10.1016/j.atmosenv.2017.09.024.
Zhao, Z. Z., Z. M. Zhou, A. Russo, H. D. Du, J. Xiang, J. P. Zhang, and C. J. Zhou, 2021: Impact of meteorological conditions at multiple scales on ozone concentration in the Yangtze River Delta. Environmental Science and Pollution Research, 28, 62 991−63 007, https://doi.org/10.1007/s11356-021-15160-2.
Zheng, B., and Coauthors, 2018: Trends in China's anthropogenic emissions since 2010 as the consequence of clean air actions. Atmospheric Chemistry and Physics, 18, 14 095−14 111, https://doi.org/10.5194/acp-18-14095-2018.
Zhong, Q. R., and Coauthors, 2018: Distinguishing emission-associated ambient air PM2.5 concentrations and meteorological factor-induced fluctuations. Environ. Sci. Technol., 52, 10 416−10 425, https://doi.org/10.1021/acs.est.8b02685.
Zhou, D. R., and Coauthors, 2013: Impacts of the East Asian monsoon on lower tropospheric ozone over coastal South China. Environmental Research Letters, 8, 044011, https://doi.org/10.1088/1748-9326/8/4/044011.