Andres, R. J., and Coauthors, 2012: A synthesis of carbon dioxide emissions from fossil-fuel combustion. Biogeosciences, 9(5), 1845−1871, https://doi.org/10.5194/bg-9-1845-2012.
Beramendi-Orosco, L., and Coauthors, 2015: Temporal and spatial variations of atmospheric radiocarbon in the Mexico City metropolitan area. Radiocarbon, 57(3), 363−375, https://doi.org/10.2458/azu_rc.57.18360.
Bozhinova, D., M. Combe, S. W. L. Palstra, H. A. J. Meijer, M. C. Krol, and W. Peters, 2013: The importance of crop growth modeling to interpret the Δ14CO2 signature of annual plants. Global Biogeochemical Cycles, 27(3), 792−803, https://doi.org/10.1002/gbc.20065.
Bozhinova, D., S. W. L. Palstra, M. K. van der Molen, M. C. Krol, H. A. J. Meijer, and W. Peters, 2016: Three years of Δ14CO2 observations from maize leaves in the Netherlands and Western Europe. Radiocarbon, 58(3), 459−478, https://doi.org/10.1017/RDC.2016.20.
Buchwitz, M., and Coauthors, 2017: Global satellite observations of column-averaged carbon dioxide and methane: The GHG-CCI XCO2 and XCH4 CRDP3 data set. Remote Sensing of Environment, 203, 276−295, https://doi.org/10.1016/j.rse.2016.12.027.
Djuricin, S., X. M. Xu, and D. E. Pataki, 2012: The radiocarbon composition of tree rings as a tracer of local fossil fuel emissions in the Los Angeles basin: 1980−2008. J. Geophys. Res., 117(D12), D12302, https://doi.org/10.1029/2011JD017284.
Guo, W., Y. Cheng, W. Fan, N. Wang, and B. Xiao, 2014: Characteristics and affecting factors of atmospheric pollutants in Xi’an. Journal of Earth Environment, 5(4), 235−242, https://doi.org/10.7515/JEE201404001.(inChinesewithEnglishabstract). (in Chinese with English abstract)
Gurney, K. R., D. L. Mendoza, Y. Y. Zhou, M. L. Fischer, C. C. Miller, S. Geethakumar, and S. de la Rue du Can, 2009: High resolution fossil fuel combustion CO2 emission fluxes for the United States. Environmental Science & Technology, 43(14), 5535−5541, https://doi.org/10.1021/es900806c.
Hammer, S., and I. Levin, 2017: Monthly mean atmospheric D14CO2 at Jungfraujoch and Schauinsland from 1986 to 2016. Tellus B, 65, 20092, https://doi.org/10.11588/data/10100.
Hoornweg, D., L. Sugar, and C. L. Trejos Gómez, 2011: Cities and greenhouse gas emissions: Moving forward. Environment and Urbanization, 23(1), 207−227, https://doi.org/10.1177/0956247810392270.
Hsueh, D. Y., N. Y. Krakauer, J. T. Randerson, X. M. Xu, S. E. Trumbore, and J. R. Southon, 2007: Regional patterns of radiocarbon and fossil fuel-derived CO2 in surface air across North America. Geophys. Res. Lett., 34(2), L02816, https://doi.org/10.1029/2006GL027032.
IPCC, 2006: 2006 IPCC Guidelines for National Greenhouse Gas Inventories. IPCC, 1989 pp.
IPCC, 2018: Summary for policymakers. Global Warming of 1.5°C. An IPCC Special Report on the Impacts of Global Warming of 1.5°C Above Pre-Industrial Levels and Related Global Greenhouse Gas Emission Pathways, in the Context of Strengthening the Global Response to the Threat of Climate Change, Sustainable Development, and Efforts to Eradicate Poverty, V. Masson-Delmotte et al., Eds., World Meteorological Organization, 32 pp.
Levin, I., B. Kromer, M. Schmidt, and H. Sartorius, 2003: A novel approach for independent budgeting of fossil fuel CO2 over Europe by 14CO2 observations. Geophys. Res. Lett., 30(23), 2194, https://doi.org/10.1029/2003GL018477.
Lichtfouse, E., M. Lichtfouse, M. Kashgarian, and R. Bol, 2005: 14C of grasses as an indicator of fossil fuel CO2 pollution. Environmental Chemistry Letters, 3(2), 78−81, https://doi.org/10.1007/s10311-005-0100-4.
Liu, Z., and Coauthors, 2015: Reduced carbon emission estimates from fossil fuel combustion and cement production in China. Nature, 524, 335−338, https://doi.org/10.1038/nature14677.
Mi, R. H., and Y. Shi, 2014: Identifying method of CBD and sub-CBD based on the distribution of resident population—A case study of Xi’an City. Journal of Shaanxi Normal University (Natural Science Edition), 42(3), 97−102, https://doi.org/10.15983/j.cnki.jsnu.2014.03.022. (in Chinese with English abstract)
Nisbet, E., and R. Weiss, 2010: Top-down versus bottom-up. Science, 328(5983), 1241−1243, https://doi.org/10.1126/science.1189936.
Niu, Z. C., and Coauthors, 2016: The spatial distribution of fossil fuel CO2 traced by Δ14C in the leaves of gingko (Ginkgo biloba L) in Beijing City, China. Environmental Science and Pollution Research, 23(1), 556−562, https://doi.org/10.1007/s11356-015-5211-2.
Peylin, P., and Coauthors, 2011: Importance of fossil fuel emission uncertainties over Europe for CO2 modeling: Model intercomparison. Atmospheric Chemistry and Physics, 11(13), 6607−6622, https://doi.org/10.5194/acp-11-6607-2011.
Riley, W. J., D. Y. Hsueh, J. T. Randerson, M. L. Fischer, J. G. Hatch, D. E. Pataki, W. Wang, and M. L. Goulden, 2008: Where do fossil fuel carbon dioxide emissions from California go? An analysis based on radiocarbon observations and an atmospheric transport model J. Geophys. Res., 113, G04002, https://doi.org/10.1029/2007JG000625.
Rosenzweig, C., W. Solecki, S. A. Hammer, and S. Mehrotra, 2010: Cities lead the way in climate-change action. Nature, 467(7318), 909−911, https://doi.org/10.1038/467909a.
Stuiver, M., and H. A. Polach, 1977: Discussion reporting of 14C data. Radiocarbon, 19(3), 355−363, https://doi.org/10.1017/S0033822200003672.
Tans, P., and R. Keeling, 2019: Open Access Data Source. [Available online from ftp://aftp.cmdl.noaa.gov/products/trends/co2/co2_mm_mlo.txt]
Turnbull, J. C., and Coauthors, 2011: Assessment of fossil fuel carbon dioxide and other anthropogenic trace gas emissions from airborne measurements over Sacramento, California in spring 2009. Atmospheric Chemistry and Physics, 11(2), 705−721, https://doi.org/10.5194/acp-11-705-2011.
Turnbull, J. C., and Coauthors, 2015: Toward quantification and source sector identification of fossil fuel CO2 emissions from an urban area: Results from the INFLUX experiment. J. Geophys. Res., 120(1), 292−312, https://doi.org/10.1002/2014JD022555.
Turnbull, J. C., E. D. Keller, T. Baisden, G. Brailsford, T. Bromley, M. Norris, and A. Zondervan, 2014: Atmospheric measurement of point source fossil CO2 emissions. Atmospheric Chemistry and Physics, 14(10), 5001−5014, https://doi.org/10.5194/acp-14-5001-2014.
Turnbull, J. C., E. D. Keller, M. W. Norris, and R. M. Wiltshire, 2016: Independent evaluation of point source fossil fuel CO2 emissions to better than 10%. Proceedings of the National Academy of Sciences of the United States of America, 113(37), 10 287−10 291, https://doi.org/10.1073/pnas.1602824113.
WMO, 2018: WMO Greenhouse Gas Bulletin. [Available online from https://www.met.ie/cms/assets/uploads/2018/11/ghg-bulletin_14_en.pdf]
Xi, X. T., X. F. Ding, D. P. Fu, L. P. Zhou, and K. X. Liu, 2011: Regional Δ14C patterns and fossil fuel derived CO2 distribution in the Beijing area using annual plants. Chinese Science Bulletin, 56(16), 1721−1726, https://doi.org/10.1007/s11434-011-4453-8.
Xi, X. T., X. F. Ding, D. P. Fu, L. P. Zhou, and K. X. Liu, 2013: Δ14C level of annual plants and fossil fuel derived CO2 distribution across different regions of China. Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms, 294, 515−519, https://doi.org/10.1016/j.nimb.2012.08.032.
Zhang, Y. L., 2013: The research about Xi’an concentrated heating flue gas emission and diffusion. M.S. thesis, Chang’an University, 69 pp. (in Chinese with English abstract)
Zhou, W. J., S. G. Wu, W. W. Huo, X. H. Xiong, P. Cheng, X. F. Lu, X., and Z. C. Niu, 2014: Tracing fossil fuel CO2 using Δ14C in Xi'an City, China. Atmospheric Environment, 94, 538−545, https://doi.org/10.1016/j.atmosenv.2014.05.058.