Bevans, C. G., C. Krettler, C. Reinhart, H. Tran, K. Koßmann, M. Watzka, and J. Oldenburg, 2013: Determination of the warfarin inhibition constant Ki for vitamin K 2,3-epoxide reductase complex subunit-1 (VKORC1) using an in vitro DTT-driven assay. Biochimica et Biophysica Acta (BBA)- General Subjects, 1830, 4202−4210, https://doi.org/10.1016/j.bbagen.2013.04.018.
Bondy, 2016: Oxidative Stress in Applied Basic Research and Clinical Practice. Springer-Verlag, 406 pp.
Cao, J. J., H. M. Xu, Q. Xu, B. H. Chen, and H. D. Kan, 2012: Fine particulate matter constituents and cardiopulmonary mortality in a heavily polluted Chinese city. Environmental Health Perspectives, 120, 373−378, https://doi.org/10.1289/ehp.1103671.
Cao, J. J., S. C. Lee, K. F. Ho, X. Y. Zhang, S. C. Zou, K. Fung, J. C. Chow, and J. G. Watson, 2003: Characteristics of carbonaceous aerosol in Pearl River Delta Region, China during 2001 winter period. Atmos. Environ., 37, 1451−1460, https://doi.org/10.1016/S1352-2310(02)01002-6.
Chen, L., and Coauthors, 2017: Assessment of population exposure to PM2.5 for mortality in China and its public health benefit based on BenMAP. Environmental Pollution, 221, 311−317, https://doi.org/10.1016/j.envpol.2016.11.080.
Chen, W.-N., and Coauthors, 2014: The real-time method of assessing the contribution of individual sources on visibility degradation in Taichung. Science of the Total Environment, 497−498, 219−228, https://doi.org/10.1016/j.scitotenv.2014.07.120.
Chinese Center for Disease Control and Prevention, 2019: National disease surveillance system death cause surveillance network report database. [Available from https://www.phsciencedata.cn/Share/edtShareNew.jsp] (in Chinese)
Department of Energy Statistics, National Bureau of Statistics, 2019: China Energy Statistical Yearbook 2018. China Statistics Press, Beijing, China, [Available online from http://www.stats.gov.cn/tjsj/tjcbw/201909/t20190924_1699094.html] (in Chinese)
Duan, J. C., J. H. Tan, S. L. Wang, J. M. Hao, and F. H. Chai, 2012: Size distributions and sources of elements in particulate matter at curbside, urban and rural sites in Beijing. Journal of Environmental Sciences, 24, 87−94, https://doi.org/10.1016/S1001-0742(11)60731-6.
Elwej, A., Y. Grojja, I. Ghorbel, O. Boudawara, R. Jarraya, T. Boudawara, and N. Zeghal, 2016: Barium chloride induces redox status unbalance, upregulates cytokine genes expression and confers hepatotoxicity in rats-alleviation by pomegranate peel. Environmental Science and Pollution Research, 23, 7559−7571, https://doi.org/10.1007/s11356-015-6023-0.
Fang, T., H. Y. Guo, L. H. Zeng, V. Verma, A. Nenes, and R. J. Weber, 2017: Highly acidic ambient particles, soluble metals, and oxidative potential: A link between sulfate and aerosol toxicity. Environ. Sci. Technol., 51, 2611−2620, https://doi.org/10.1021/acs.est.6b06151.
Feng, R., and Coauthors, 2021a: Effects of domestic solid fuel combustion emissions on the biomarkers of homemakers in rural areas of the Fenwei Plain, China. Ecotoxicology and Environmental Safety, 214, 112104, https://doi.org/10.1016/j.ecoenv.2021.112104.
Feng, R., and Coauthors, 2022: Variations of personal exposure to particulate nitrated phenols from heating energy renovation in China: The first assessment on associated toxicological impacts with particle size distributions. Environ. Sci. Technol., 56, 3974−3983, https://doi.org/10.1021/acs.est.1c07950.
Feng, T., H. B. Du, D. M. Coffman, A. Y. Qu, and Z. F. Dong, 2021b: Clean heating and heating poverty: A perspective based on cost-benefit analysis. Energy Policy, 152, 112205, https://doi.org/10.1016/J.ENPOL.2021.112205.
Gu, Y. X., and Coauthors, 2023: Associations of personal exposure to domestic heating and cooking fuel emissions and epidemiological effects on rural residents in the Fenwei Plain, China. Science of the Total Environment, 856, 159217, https://doi.org/10.1016/j.scitotenv.2022.159217.
He, K. L., and Coauthors, 2021: Characteristics of indoor and personal exposure to particulate organic compounds emitted from domestic solid fuel combustion in rural areas of northwest China. Atmospheric Research, 248, 105181, https://doi.org/10.1016/j.atmosres.2020.105181.
Hellack, B., C. Nickel, C. Albrecht, T. A. J. Kuhlbusch, S. Boland, A. Baeza-Squiban, W. Wohlleben, and R. P. F. Schins, 2017: Analytical methods to assess the oxidative potential of nanoparticles: A review. Environmental Science: Nano, 4, 1920−1934, https://doi.org/10.1039/C7EN00346C.
Hong, L., G. Liu, L. M. Zhou, J. H. Li, H. Xu, and D. Wu, 2017: Emission of organic carbon, elemental carbon and water-soluble ions from crop straw burning under flaming and smoldering conditions. Particuology, 31, 181−190, https://doi.org/10.1016/j.partic.2016.09.002.
Hu, S., A. Polidori, M. Arhami, M. M. Shafer, J. J. Schauer, A. Cho, and C. Sioutas, 2008: Redox activity and chemical speciation of size fractioned PM in the communities of the Los Angeles-Long Beach harbor. Atmospheric Chemistry and Physics, 8, 6439−6451, https://doi.org/10.5194/acp-8-6439-2008.
Ku, T. T., Y. Y. Zhang, X. T. Ji, G. K. Li, and N. Sang, 2017: PM2.5-bound metal metabolic distribution and coupled lipid abnormality at different developmental windows. Environmental Pollution, 228, 354−362, https://doi.org/10.1016/j.envpol.2017.05.040.
Lakey, P. S. J., T. Berkemeier, H. J. Tong, A. M. Arangio, K. Lucas, U. Pöschl, and M. Shiraiwa, 2016: Chemical exposure-response relationship between air pollutants and reactive oxygen species in the human respiratory tract. Scientific Reports, 6, 32916, https://doi.org/10.1038/srep32916.
Lee, K.-Y., and Coauthors, 2014: Methionine oxidation in albumin by fine haze particulate matter: An in vitro and in vivo study. Journal of Hazardous Materials, 274, 384−391, https://doi.org/10.1016/j.jhazmat.2014.04.029.
Lei, Y. L., and Coauthors, 2022: Characteristics and health risks of parent, alkylated, and oxygenated PAHs and their contributions to reactive oxygen species from PM2.5 vehicular emissions in the longest tunnel in downtown Xi’an, China. Environ. Res., 212, 113357, https://doi.org/10.1016/j.envres.2022.113357.
Lewné, M., N. Plato, and P. Gustavsson, 2007: Exposure to particles, elemental carbon and nitrogen dioxide in workers exposed to motor exhaust. Annals of Occupational Hygiene, 51, 693−701, https://doi.org/10.1093/annhyg/mem046.
Li, B. J., Y. J. Sun, W. D. Zheng, H. Zhang, J. Jurasz, T. Du, and Y. Wang, 2021a: Evaluating the role of clean heating technologies in rural areas in improving the air quality. Applied Energy, 289, 116693, https://doi.org/10.1016/j.apenergy.2021.116693.
Li, J. W., and Coauthors, 2021b: Variation in PM2.5 sources in central North China Plain during 2017−2019: Response to mitigation strategies. Journal of Environmental Management, 288, 112370, https://doi.org/10.1016/j.jenvman.2021.112370.
Lindberg, D., J. Niemi, M. Engblom, P. Yrjas, T. Laurén, and M. Hupa, 2016: Effect of temperature gradient on composition and morphology of synthetic chlorine-containing biomass boiler deposits. Fuel Processing Technology, 141, 285−298, https://doi.org/10.1016/j.fuproc.2015.10.011.
Liu, T., and Coauthors, 2021: Urban-rural disparity of the short-term association of PM2.5 with mortality and its attributable burden. The Innovation, 2, 100171, https://doi.org/10.1016/J.XINN.2021.100171.
Lu, Z., and Coauthors, 2010: Sulfur dioxide emissions in China and sulfur trends in East Asia since 2000. Atmospheric Chemistry and Physics, 10, 6311−6331, https://doi.org/10.5194/acp-10-6311-2010.
National Development and Reform Commission of China, 2017: Notice on printing and distributing “The 5-year Winter Clean Heating Plan (WCHP) for Northern China from 2017 to 2021”. China National Development and Reform Commission, Beijing, China. [Available online from http://www.gov.cn/xinwen/2017-12/20/content_5248855.htm] (in Chinese)
National Energy Administration, 2017: Thirteenth Five-Year Plan for Development of Biomass Energy. China Statistics Press, Beijing, China. (in Chinese) [Available online from http://www.gov.cn/xinwen/2016-12/06/content_5143612.htm]
Pope, C. A., and D. W. Dockery, 2006: Health effects of fine particulate air pollution: Lines that connect. Journal of the Air & Waste Management Association, 56, 709−742, https://doi.org/10.1080/10473289.2006.10464485.
Samara, C., 2017: On the redox activity of urban aerosol particles: Implications for size distribution and relationships with organic aerosol components. Atmosphere, 8, 205, https://doi.org/10.3390/atmos8100205.
Shaanxi Bureau of Statistics, Survey Office of the National Bureau of Statistics in Shaanxi, 2019: Shaanxi Statistical Yearbook 2018. [Available online from http://tjj.shaanxi.gov.cn/upload/2021/zl/2019/zk/indexch.htm]
Shen, G. F., and M. Xue, 2014: Comparison of carbon monoxide and particulate matter emissions from residential burnings of pelletized biofuels and traditional solid fuels. Energy & Fuels, 28, 3933−3939, https://doi.org/10.1021/ef5006379.
Shen, Z. X., J. J. Cao, Z. Tong, S. X. Liu, L. S. S. Reddy, Y. M. Han, T. Zhang, and J. Zhou, 2009b: Chemical characteristics of submicron particles in winter in Xi’an. Aerosol and Air Quality Research, 9, 80−93, https://doi.org/10.4209/aaqr.2008.10.0050.
Shen, Z. X., and Coauthors, 2009a: Ionic composition of TSP and PM2.5 during dust storms and air pollution episodes at Xi'an, China. Atmos. Environ., 43, 2911−2918, https://doi.org/10.1016/j.atmosenv.2009.03.005.
Shuster-Meiseles, T., M. M. Shafer, J. Heo, M. Pardo, D. S. Antkiewicz, J. J. Schauer, A. Rudich, and Y. Rudich, 2016: ROS-generating/ARE-activating capacity of metals in roadway particulate matter deposited in urban environment. Environ. Res., 146, 252−262, https://doi.org/10.1016/j.envres.2016.01.009.
Sillapapiromsuk, S., S. Chantara, U. Tengjaroenkul, S. Prasitwattanaseree, and T. Prapamontol, 2013: Determination of PM10 and its ion composition emitted from biomass burning in the chamber for estimation of open burning emissions. Chemosphere, 93, 1912−1919, https://doi.org/10.1016/j.chemosphere.2013.06.071.
State Administration for Market Regulation, and Standardization Administration of the People's Republic of China, 2022: GB/T 18883-2022 Standards for Indoor Air Quality. Standards Press of China, Beijing. (in Chinese)
Sun, J., and Coauthors, 2017: Particulate matters emitted from maize straw burning for winter heating in rural areas in Guanzhong Plain, China: Current emission and future reduction. Atmospheric Research, 184, 66−76, https://doi.org/10.1016/j.atmosres.2016.10.006.
Sun, J., and Coauthors, 2019: Volatile organic compounds emissions from traditional and clean domestic heating appliances in Guanzhong Plain, China: Emission factors, source profiles, and effects on regional air quality. Environment International, 133, 105252, https://doi.org/10.1016/j.envint.2019.105252.
Valko, M., H. Morris, and M. T. D. Cronin, 2005: Metals, toxicity and oxidative stress. Current Medicinal Chemistry, 12(10), 1161−1208, https://doi.org/10.2174/0929867053764635.
Verma, V., and Coauthors, 2014: Reactive oxygen species associated with water-soluble PM2.5 in the southeastern United States: Spatiotemporal trends and source apportionment. Atmospheric Chemistry and Physics, 14, 12 915−12 930, https://doi.org/10.5194/acp-14-12915-2014.
Wang, Z. X., and Coauthors, 2022: Chemical characterization of PM2.5 in heavy polluted industrial zones in the Guanzhong Plain, northwest China: Determination of fingerprint source profiles. Science of the Total Environment, 840, 156729, https://doi.org/10.1016/j.scitotenv.2022.156729.
Xi, S. H., Y. P. Jin, X. Q. Lv, and G. F. Sun, 2010: Distribution and speciation of arsenic by transplacental and early life exposure to inorganic arsenic in offspring rats. Biological Trace Element Research, 134, 84−97, https://doi.org/10.1007/s12011-009-8455-1.
Xu, H. M., and Coauthors, 2018: Personal exposure of PM2. 5 emitted from solid fuels combustion for household heating and cooking in rural Guanzhong Plain, northwestern China. Atmos. Environ., 185, 196−206, https://doi.org/10.1016/j.atmosenv.2018.05.018.
Xu, J. S., C. R. Jia, H. Yu, H. H. Xu, D. S. Ji, C. J. Wang, H. Xiao, and J. He, 2021: Characteristics, sources, and health risks of PM2.5-bound trace elements in representative areas of Northern Zhejiang Province, China. Chemosphere, 272, 129632, https://doi.org/10.1016/j.chemosphere.2021.129632.
Yu, H. R., J. L. Wei, Y. L. Cheng, K. Subedi, and V. Verma, 2018: Synergistic and antagonistic interactions among the particulate matter components in generating reactive oxygen species based on the dithiothreitol assay. Environ. Sci. Technol., 52, 2261−2270, https://doi.org/10.1021/acs.est.7b04261.
Yun, X., and Coauthors, 2020: Residential solid fuel emissions contribute significantly to air pollution and associated health impacts in China. Science Advances, 6, eaba7621, https://doi.org/10.1126/sciadv.aba7621.
Zhang, B., and Coauthors, 2021: Emission factors, characteristics, and gas-particle partitioning of polycyclic aromatic hydrocarbons in PM2.5 emitted for the typical solid fuel combustions in rural Guanzhong Plain, China. Environmental Pollution, 286, 117573, https://doi.org/10.1016/j.envpol.2021.117573.
Zhang, Y., and Coauthors, 2020: Emission reduction effect on PM2.5, SO2 and NOx by using red mud as additive in clean coal briquetting. Atmos. Environ., 223, 117203, https://doi.org/10.1016/j.atmosenv.2019.117203.
Zhang, Z. H., and Coauthors, 2022: Are reactive oxygen species (ROS) a suitable metric to predict toxicity of carbonaceous aerosol particles. Atmospheric Chemistry and Physics, 22, 1793−1809, https://doi.org/10.5194/acp-22-1793-2022.
Zhou, M., H. X. Liu, L. Q. Peng, Y. Qin, D. Chen, L. Zhang, and D. L. Mauzerall, 2022: Environmental benefits and household costs of clean heating options in northern China. Nature Sustainability, 5, 329−338, https://doi.org/10.1038/s41893-021-00837-w.
Zíková, N., Y. G. Wang, F. M. Yang, X. H. Li, M. Tian, and P. K. Hopke, 2016: On the source contribution to Beijing PM2.5 concentrations. Atmos. Environ., 134, 84−95, https://doi.org/10.1016/j.atmosenv.2016.03.047.