Axelsen, S. L., 2005: The Role of Relative Humidity on Shallow Cumulus Dynamics; Results from a Large Eddy Simulation Model. Master thesis, Utrecht, The Netherlands: Utrecht University, 88 pp.
Bechtold, P., M. Köhler, T. Jung, F. Doblas-Reyes, M. Leutbecher, M. J. Rodwell, F. Vitart, and G. Balsamo, 2008: Advances in simulating atmospheric variability with the ECMWF model: From synoptic to decadal time-scales. Quart. J. Roy. Meteor. Soc., 134, 1337−1351, https://doi.org/10.1002/qj.289.
Bera, S., and T. V. Prabha, 2019: Parameterization of entrainment rate and mass flux in continental cumulus clouds: Inference from large eddy simulation. J. Geophys. Res., 124, 13 127−13 139, https://doi.org/10.1029/2019JD031078.
Betts, A. K., 1973: Non-precipitating cumulus convection and its parameterization. Quart. J. Roy. Meteor. Soc., 99, 178−196, https://doi.org/10.1002/qj.49709941915.
Betts, A. K., 1975: Parametric interpretation of trade-wind cumulus budget studies. J. Atmos. Sci., 32, 1934−1945, https://doi.org/10.1175/1520-0469(1975)032<1934:PIOTWC>2.0.CO;2.
Böing, S. J., A. P. Siebesma, J. D. Korpershoek, and H. J. J. Jonker, 2012: Detrainment in deep convection. Geophys. Res. Lett., 39, L20816, https://doi.org/10.1029/2012GL053735.
Böing, S. J., H. J. J. Jonker, W. A. Nawara, and A. P. Siebesma, 2014: On the deceiving aspects of mixing diagrams of deep cumulus convection. J. Atmos. Sci., 71, 56−68, https://doi.org/10.1175/JAS-D-13-0127.1.
Dawe, J. T., and P. H. Austin, 2011: Interpolation of LES cloud surfaces for use in direct calculations of entrainment and detrainment. Mon. Wea. Rev., 139, 444−456, https://doi.org/10.1175/2010MWR3473.1.
Dawe, J. T., and P. H. Austin, 2013: Direct entrainment and detrainment rate distributions of individual shallow cumulus clouds in an LES. Atmospheric Chemistry and Physics, 13, 7795−7811, https://doi.org/10.5194/acp-13-7795-2013.
de Rooy, W. C., and Coauthors, 2013: Entrainment and detrainment in cumulus convection: An overview. Quart. J. Roy. Meteor. Soc., 139, 1−19, https://doi.org/10.1002/qj.1959.
Del Genio, A. D., Y. H. Chen, D. Kim, and M.-S. Yao, 2012: The MJO transition from shallow to deep convection in CloudSat/CALIPSO data and GISS GCM simulations. J. Climate, 25, 3755−3770, https://doi.org/10.1175/JCLI-D-11-00384.1.
Donner, L. J., C. J. Seman, R. S. Hemler, and S. M. Fan, 2001: A cumulus parameterization including mass fluxes, convective vertical velocities, and mesoscale effects: Thermodynamic and hydrological aspects in a general circulation model. J. Climate, 14, 3444−3463, https://doi.org/10.1175/1520-0442(2001)014<3444:ACPIMF>2.0.CO;2.
Donner, L. J., T. A. O'Brien, D. Rieger, B. Vogel, and W. F. Cooke, 2016: Are atmospheric updrafts a key to unlocking climate forcing and sensitivity? Atmospheric Chemistry and Physics, 16, 12 983−12 992, https://doi.org/10.5194/acp-16-12983-2016.
Drueke, S., D. J. Kirshbaum, and P. Kollias, 2019: Evaluation of shallow-cumulus entrainment rate retrievals using large-eddy simulation. J. Geophys. Res., 124, 9624−9643, https://doi.org/10.1029/2019JD030889.
Endo, S., and Coauthors, 2015: RACORO continental boundary layer cloud investigations: 2. Large-eddy simulations of cumulus clouds and evaluation with in situ and ground-based observations. J. Geophys. Res., 120, 5993−6014, https://doi.org/10.1002/2014JD022525.
Esbensen, S., 1978: Bulk thermodynamic effects and properties of small tropical cumuli. J. Atmos. Sci., 35, 826−837, https://doi.org/10.1175/1520-0469(1978)035<0826:BTEAPO>2.0.CO;2.
Gerber, H. E., G. M. Frick, J. B. Jensen, and J. G. Hudson, 2008: Entrainment, mixing, and microphysics in trade-wind cumulus. J. Meteor. Soc. Japan, 86A, 87−106, https://doi.org/10.2151/jmsj.86A.87.
Gregory, D., 2001: Estimation of entrainment rate in simple models of convective clouds. Quart. J. Roy. Meteor. Soc., 127, 53−72, https://doi.org/10.1002/qj.49712757104.
Guo, J. P., M. J. Deng, J. W. Fan, Z. Q. Li, Q. Chen, P. M. Zhai, Z. J. Dai, and X. W. Li, 2014: Precipitation and air pollution at mountain and plain stations in northern China: Insights gained from observations and modeling. J. Geophys. Res., 119, 4793−4807, https://doi.org/10.1002/2013JD021161.
Guo, X. H., C. S. Lu, T. L. Zhao, G. J. Zhang, and Y. G. Liu, 2015a: An observational study of entrainment rate in deep convection. Atmosphere, 6, 1362−1376, https://doi.org/10.3390/atmos6091362.
Guo, X. L., D. H. Fu, X. Y. Li, Z. X. Hu, H. C. Lei, H. Xiao, and Y. C. Hong, 2015b: Advances in cloud physics and weather modification in China. Adv. Atmos. Sci., 32, 230−249, https://doi.org/10.1007/s00376-014-0006-9.
Gustafson, W. I., and Coauthors, 2017: LASSO data bundles, Atmospheric Radiation Measurement user facility, https://doi.org/10.5439/1342961.
Gustafson, W. I., and Coauthors, 2020: The large-eddy simulation (LES) atmospheric radiation measurement (ARM) symbiotic simulation and observation (LASSO) activity for continental shallow convection. Bull. Amer. Meteor. Soc., 101, E462−E479, https://doi.org/10.1175/BAMS-D-19-0065.1.
Hanf, F. S., and H. Annamalai, 2020: Systematic errors in south asian monsoon precipitation: Process-based diagnostics and sensitivity to entrainment in NCAR models. J. Climate, 33, 2817−2840, https://doi.org/10.1175/JCLI-D-18-0495.1.
Haupt, S. E., and Coauthors, 2016: The Sun4Cast® solar power forecasting system: The result of the public-private-academic partnership to advance solar power forecasting. No. NCAR/TN-526+STR, https://doi.org/10.5065/D6N58JR2.
Houze, R. A. Jr., 1993: Cloud Dynamics. Academic Press, 573 pp.
Jeyaratnam, J., Z. J. Luo, S. E. Giangrande, D. Wang, and H. Masunaga, 2021: A satellite-based estimate of convective vertical velocity and convective mass flux: Global survey and comparison with radar wind profiler observations. Geophys. Res. Lett., 48, e2020GL090675, https://doi.org/10.1029/2020GL090675.
Jimenez, P. A., and Coauthors, 2016: WRF-Solar: Description and clear-sky assessment of an augmented NWP model for solar power prediction. Bull. Amer. Meteor. Soc., 97, 1249−1264, https://doi.org/10.1175/BAMS-D-14-00279.1.
Jonas, P. R., 1990: Observations of cumulus cloud entrainment. Atmos. Res., 25, 105−127, https://doi.org/10.1016/0169-8095(90)90008-Z.
Kim, D., and I.-S. Kang, 2012: A bulk mass flux convection scheme for climate model: Description and moisture sensitivity. Climate Dyn., 38, 411−429, https://doi.org/10.1007/s00382-010-0972-2.
Klocke, D., R. Pincus, and J. Quaas, 2011: On constraining estimates of climate sensitivity with present-day observations through model weighting. J. Climate, 24, 6092−6099, https://doi.org/10.1175/2011JCLI4193.1.
Li, J. J., and Coauthors, 2022: Convective entrainment rate over the Tibetan Plateau and its adjacent regions in the boreal summer using SNPP-VIIRS. Remote Sensing, 14, 2073, https://doi.org/10.3390/rs14092073.
Lin, C., 1999: Some bulk properties of cumulus ensembles simulated by a cloud-resolving model. Part II: Entrainment profiles. J. Atmos. Sci., 56, 3736−3748, https://doi.org/10.1175/1520-0469(1999)056<3736:SBPOCE>2.0.CO;2.
Lin, W. S., F. Soikun, C. S. Wu, C. M. Ku, A. Y. Wang, and Y. Yang, 2000: A simulating study on resolvable-scale microphysical parameterization in a mesoscale model. Adv. Atmos. Sci., 17, 487−502, https://doi.org/10.1007/s00376-000-0038-1.
Lu, B., and H.-L. Ren, 2016: Improving ENSO periodicity simulation by adjusting cumulus entrainment in BCC_CSMs. Dyn. Atmos. Oceans, 76, 127−140, https://doi.org/10.1016/j.dynatmoce.2016.10.005.
Lu, C. S., Y. G. Liu, S. J. Niu, and A. M. Vogelmann, 2012a: Lateral entrainment rate in shallow cumuli: Dependence on dry air sources and probability density functions. Geophys. Res. Lett., 39, L20812, https://doi.org/10.1029/2012GL053646.
Lu, C. S., Y. G. Liu, S. S. Yum, S. J. Niu, and S. Endo, 2012b: A new approach for estimating entrainment rate in cumulus clouds. Geophys. Res. Lett., 39, L04802, https://doi.org/10.1029/2011GL050546.
Lu, C. S., Y. G. Liu, G. J. Zhang, X. H. Wu, S. Endo, L. Cao, Y. Q. Li, and X. H. Guo, 2016: Improving parameterization of entrainment rate for shallow convection with aircraft measurements and large-eddy simulation. J. Atmos. Sci., 73, 761−773, https://doi.org/10.1175/JAS-D-15-0050.1.
Lu, C. S., and Coauthors, 2018: Observational relationship between entrainment rate and environmental relative humidity and implications for convection parameterization. Geophys. Res. Lett., 45, 13 495−13 504, https://doi.org/10.1029/2018GL080264.
Luo, S., and Coauthors, 2020: Parameterizations of entrainment-mixing mechanisms and their effects on cloud droplet spectral width based on numerical simulations. J. Geophys. Res., 125, e2020JD032972, https://doi.org/10.1029/2020JD032972.
Luo, S., and Coauthors, 2022: Relationships between cloud droplet spectral relative dispersion and entrainment rate and their impacting factors. Adv. Atmos. Sci., 39, 2087−2106, https://doi.org/10.1007/s00376-022-1419-5.
Luo, Z. J., G. Y. Liu, and G. L. Stephens, 2010: Use of A-Train data to estimate convective buoyancy and entrainment rate. Geophys. Res. Lett., 37, L09804, https://doi.org/10.1029/2010GL042904.
Moeng, C.-H., and P. P. Sullivan, 1994: A comparison of shear-and buoyancy-driven planetary boundary layer flows. J. Atmos. Sci., 51, 999−1022, https://doi.org/10.1175/1520-0469(1994)051<0999:ACOSAB>2.0.CO;2.
Nakanish, M., 2001: Improvement of the Mellor–Yamada turbulence closure model based on large-eddy simulation data. Bound.-Layer Meteorol., 99, 349−378, https://doi.org/10.1023/A:1018915827400.
Neggers, R. A. J., A. P. Siebesma, and H. J. J. Jonker, 2002: A multiparcel model for shallow cumulus convection. J. Atmos. Sci., 59, 1655−1668, https://doi.org/10.1175/1520-0469(2002)059<1655:AMMFSC>2.0.CO;2.
Neggers, R. A. J., P. G. Duynkerke, and S. M. A. Rodts, 2003: Shallow cumulus convection: A validation of large-eddy simulation against aircraft and Landsat observations. Quart. J. Roy. Meteor. Soc., 129, 2671−2696, https://doi.org/10.1256/qj.02.93.
Romps, D. M., 2010: A direct measure of entrainment. J. Atmos. Sci., 67, 1908−1927, https://doi.org/10.1175/2010JAS3371.1.
Romps, D. M., 2016: The stochastic parcel model: A deterministic parameterization of stochastically entraining convection. Journal of Advances in Modeling Earth Systems, 8, 319−344, https://doi.org/10.1002/2015MS000537.
Romps, D. M., and Z. M. Kuang, 2010: Nature versus nurture in shallow convection. J. Atmos. Sci., 67, 1655−1666, https://doi.org/10.1175/2009JAS3307.1.
Sheng, J., and Coauthors, 2022: Microphysical structure and vertical evolution of continental cumulus clouds from analysis of aircraft measurements in Northern China. Atmospheric Research, 277, 106305, https://doi.org/10.1016/j.atmosres.2022.106305.
Shin, H. H., and Coauthors, 2021: Large-scale forcing impact on the development of shallow convective clouds revealed from LASSO large-eddy simulations. J. Geophys. Res., 126, e2021JD035208, https://doi.org/10.1029/2021JD035208.
Song, X. L., and G. J. Zhang, 2018: The roles of convection parameterization in the formation of double ITCZ syndrome in the NCAR CESM: I. Atmospheric processes. Journal of Advances in Modeling Earth Systems, 10, 842−866, https://doi.org/10.1002/2017MS001191.
Stanfield, R. E., H. Su, J. H. Jiang, S. R. Freitas, A. M. Molod, Z. J. Luo, L. Huang, and M. Luo, 2019: Convective entrainment rates estimated from Aura CO and CloudSat/CALIPSO observations and comparison with GEOS-5. J. Geophys. Res., 124, 9796−9807, https://doi.org/10.1029/2019JD030846.
Stirling, A. J., and R. A. Stratton, 2012: Entrainment processes in the diurnal cycle of deep convection over land. Quart. J. Roy. Meteor. Soc., 138, 1135−1149, https://doi.org/10.1002/qj.1868.
Stommel, H., 1947: Entrainment of air into a cumulus cloud. J. Meteorol., 4, 91−94, https://doi.org/10.1175/1520-0469(1947)004<0091:EOAIAC>2.0.CO;2.
Takahashi, H., and Z. Z. Luo, 2012: Where is the level of neutral buoyancy for deep convection. Geophys. Res. Lett., 39, L15809, https://doi.org/10.1029/2012GL052638.
Takahashi, H., Z. J. Luo, G. Stephens, and J. P. Mulholland, 2023: Revisiting the Land-Ocean contrasts in deep convective cloud intensity using global satellite observations. Geophys. Res. Lett., 50, e2022GL102089, https://doi.org/10.1029/2022GL102089.
Tao, C., and S. Xie, 2004: Constrained variational analysis (60VARANARUC). Atmospheric Radiation Measurement (ARM) User Facility, https://doi.org/10.5439/1647300.
Tao, C., and S. Xie, 2012: Constrained variational analysis (60VARANARAP), Atmospheric Radiation Measurement (ARM) User Facility, https://doi.org/10.5439/1647174.
Telford, J. W., 1996: Clouds with turbulence; the role of entrainment. Atmospheric Research, 40, 261−282, https://doi.org/10.1016/0169-8095(95)00038-0.
Thompson, G., and T. Eidhammer, 2014: A study of aerosol impacts on clouds and precipitation development in a large winter cyclone. J. Atmos. Sci., 71, 3636−3658, https://doi.org/10.1175/JAS-D-13-0305.1.
Villalba-Pradas, A., and F. J. Tapiador, 2022: Empirical values and assumptions in the convection schemes of numerical models. Geoscientific Model Development, 15, 3447−3518, https://doi.org/10.5194/gmd-15-3447-2022.
von Salzen, K., and N. A. McFarlane, 2002: Parameterization of the bulk effects of lateral and cloud-top entrainment in transient shallow cumulus clouds. J. Atmos. Sci., 59, 1405−1430, https://doi.org/10.1175/1520-0469(2002)059<1405:POTBEO>2.0.CO;2.
Wallace, J. M., and P. V. Hobbs, 2006: Atmospheric Science: An Introductory Survey. 2nd ed. Academic Press, 483 pp, https://doi.org/10.1016/C2009-0-00034-8.
Wang, Y., G. J. Zhang, and Y.-J. He, 2017: Simulation of precipitation extremes using a stochastic convective parameterization in the NCAR CAM5 under different resolutions. J. Geophys. Res., 122, 12 875−12 891, https://doi.org/10.1002/2017JD026901.
Wang, Y., and Coauthors, 2018: Aerosol microphysical and radiative effects on continental cloud ensembles. Adv. Atmos. Sci., 35, 234−247, https://doi.org/10.1007/s00376-017-7091-5.
Wang, Y., and Coauthors, 2023: Diverse dispersion effects and parameterization of relative dispersion in urban fog in eastern China. J. Geophys. Res., 128, e2022JD037514, https://doi.org/10.1029/2022JD037514.
Wang, Z. T., 2020: A method for a direct measure of entrainment and detrainment. Mon. Wea. Rev., 148, 3329−3340, https://doi.org/10.1175/MWR-D-20-0046.1.
Wu, T. W., 2012: A mass-flux cumulus parameterization scheme for large-scale models: Description and test with observations. Climate Dyn., 38, 725−744, https://doi.org/10.1007/s00382-011-0995-3.
Xie, X. N., and X. D. Liu, 2013: Analytical studies of the cloud droplet spectral dispersion influence on the first indirect aerosol effect. Adv. Atmos. Sci., 30, 1313−1319, https://doi.org/10.1007/s00376-012-2141-5.
Xu, X. Q., C. Sun, C. S. Lu, Y. G. Liu, G. J. Zhang, and Q. Chen, 2021: Factors affecting entrainment rate in deep convective clouds and parameterizations. J. Geophys. Res., 126, e2021JD034881, https://doi.org/10.1029/2021JD034881.
Xu, X. Q., C. S. Lu, Y. G. Liu, S. Luo, X. Zhou, S. Endo, L. Zhu, and Y. Wang, 2022: Influences of an entrainment–mixing parameterization on numerical simulations of cumulus and stratocumulus clouds. Atmospheric Chemistry and Physics, 22, 5459−5475, https://doi.org/10.5194/acp-22-5459-2022.
Yanai, M., S. Esbensen, and J.-H. Chu, 1973: Determination of bulk properties of tropical cloud clusters from large-scale heat and moisture budgets. J. Atmos. Sci., 30, 611−627, https://doi.org/10.1175/1520-0469(1973)030<0611:DOBPOT>2.0.CO;2.
Yang, B., and Coauthors, 2013: Uncertainty quantification and parameter tuning in the CAM5 Zhang-McFarlane convection scheme and impact of improved convection on the global circulation and climate. J. Geophys. Res., 118, 395−415, https://doi.org/10.1029/2012JD018213.
Yang, B., Y. C. Zhang, Y. Qian, A. N. Huang, and H. P. Yan, 2015: Calibration of a convective parameterization scheme in the WRF model and its impact on the simulation of East Asian summer monsoon precipitation. Climate Dyn., 44, 1661−1684, https://doi.org/10.1007/s00382-014-2118-4.
Yang, B., M. H. Wang, G. J. Zhang, Z. Guo, A. N. Huang, Y. C. Zhang, and Y. Qian, 2021: Linking deep and shallow convective mass fluxes via an assumed entrainment distribution in CAM5-CLUBB: Parameterization and simulated precipitation variability. Journal of Advances in Modeling Earth Systems, 13, e2020MS002357, https://doi.org/10.1029/2020MS002357.
Yang, Y., and Coauthors, 2019: Toward understanding the process-level impacts of aerosols on microphysical properties of shallow cumulus cloud using aircraft observations. Atmospheric Research, 221, 27−33, https://doi.org/10.1016/j.atmosres.2019.01.027.
Yeom, J. M., S. S. Yum, Y. G. Liu, and C. S. Lu, 2017: A study on the entrainment and mixing process in the continental stratocumulus clouds measured during the RACORO campaign. Atmospheric Research, 194, 89−99, https://doi.org/10.1016/j.atmosres.2017.04.028.
Zhang, G. J., and N. A. McFarlane, 1995: Sensitivity of climate simulations to the parameterization of cumulus convection in the Canadian Climate Centre general circulation model. Atmosphere-Ocean, 33, 407−446, https://doi.org/10.1080/07055900.1995.9649539.
Zhang, G. J., X. Q. Wu, X. P. Zeng, and T. Mitovski, 2016: Estimation of convective entrainment properties from a cloud-resolving model simulation during TWP-ICE. Climate Dyn., 47, 2177−2192, https://doi.org/10.1007/s00382-015-2957-7.
Zhao, M., 2014: An investigation of the connections among convection, clouds, and climate sensitivity in a global climate model. J. Climate, 27, 1845−1862, https://doi.org/10.1175/JCLI-D-13-00145.1.
Zhao, M., and Coauthors, 2018a: The GFDL global atmosphere and land model AM4.0/LM4.0: 1. Simulation characteristics with prescribed SSTs. Journal of Advances in Modeling Earth Systems, 10, 691−734, https://doi.org/10.1002/2017MS001208.
Zhao, M., and Coauthors, 2018b: The GFDL global atmosphere and land model AM4.0/LM4.0: 2. Model description, sensitivity studies, and tuning strategies. Journal of Advances in Modeling Earth Systems, 10, 735−769, https://doi.org/10.1002/2017MS001209.
Zhu, L., and Coauthors, 2021: A new approach for simultaneous estimation of entrainment and detrainment rates in non-precipitating shallow cumulus. Geophys. Res. Lett., 48, e2021GL093817, https://doi.org/10.1029/2021GL093817.
Zou, L. W., and T. J. Zhou, 2011: Sensitivity of a regional ocean-atmosphere coupled model to convection parameterization over western North Pacific. J. Geophys. Res., 116, D18106, https://doi.org/10.1029/2011JD015844.