Chen, G. X., R. Y. Lan, W. X. Zeng, H. Pan, and W. B. Li, 2018a: Diurnal variations of rainfall in surface and satellite observations at the monsoon coast (South China). J. Climate, 31, 1703−1724, https://doi.org/10.1175/JCLI-D-17-0373.1.
Chen, X. C., K. Zhao, M. Xue, B. W. Zhou, X. X. Huang, and W. X. Xu, 2015: Radar-observed diurnal cycle and propagation of convection over the Pearl River Delta during Mei-Yu season. J. Geophys. Res., 120, 12 557−12 575,
Chen, X. C., F. Q. Zhang, and K. Zhao, 2016: Diurnal variations of the land-sea breeze and its related precipitation over South China. J. Atmos. Sci., 73, 4793−4815, https://doi.org/10.1175/JAS-D-16-0106.1.
Chen, X. C., F. Q. Zhang, and K. Zhao, 2017: Influence of monsoonal wind speed and moisture content on intensity and diurnal variations of the Mei-Yu Season coastal rainfall over South China. J. Atmos. Sci., 74, 2835−2856, https://doi.org/10.1175/JAS-D-17-0081.1.
Chen, X. X., Z. Y. Ding, C. H. Liu, Y. Chang, and C. L. Zhu, 2012: Statistic analysis on the formation system of warm-sector heavy rainfall in May and June from 2000−2009. Journal of Tropical Meteorology, 28, 707−718. (in Chinese with English abstract)
Chen, Y., W. Q. Lü, C. Yu, S. Q. Li, S. N. Yang, W. J. Zhu, J. Xu, and Y. Gong, 2018b: Analysis of a forecast failure case of warm sector torrential rainfall in North China. Meteorological Monthly, 44, 15−25, https://doi.org/10.7519/j.issn.1000-0526.2018.01.002. (in Chinese with English abstract
China Meteorological Administration, 2018: Yearbook of Meteorological Disasters in China-2017. China Meteorological Press, Beijing, 229 pp. (in Chinese)
Ding, Y.-H, 1994: Monsoons over China. Adv. Atmos. Sci., 11, 252−252, https://doi.org/10.1007/BF02666553.
Ding, Y. H., and X. Y. Shen, 1998: Symmetric instability in nonconservative systems Part I: Forcing effect of weak viscosity. Scientia Atmospherica Sinica, 22, 145−155, https://doi.org/10.3878/j.issn.1006-9895.1998.02.03. (in Chinese with English abstract
Ding, Y.-H., and Coauthors, 2006: South China Sea monsoon experiment (SCSMEX) and the East Asian monsoon. Acta Meteorologica Sinica, 20, 159−190.
Du, Y., and G. X. Chen, 2018: Heavy rainfall associated with double low-level jets over Southern China. Part I: Ensemble-based analysis. Mon. Wea. Rev., 146, 3827−3844, https://doi.org/10.1175/MWR-D-18-0101.1.
Du, Y., and G. X. Chen, 2019a: Climatology of low-level jets and their impact on rainfall over southern China during the early-summer rainy season. J. Climate, 32, 8813−8833, https://doi.org/10.1175/JCLI-D-19-0306.1.
Du, Y., and G. X. Chen, 2019b: Heavy rainfall associated with double low-level jets over Southern China. Part II: Convection initiation. Mon. Wea. Rev., 147, 543−565, https://doi.org/10.1175/MWR-D-18-0102.1.
Duchon, C. E., 1979: Lanczos filtering in one and two dimensions. J. Appl. Meteorol. Climatol., 18, 1016−1022, https://doi.org/10.1175/1520-0450(1979)018<1016:LFIOAT>2.0.CO;2.
Erlebacher, G., M. Y. Hussaini, and L. M. Jameson, 1996: Wavelets: Theory and Applications. Oxford University Press, 528 pp.
Fu, J.-L., F. Q. Zhang, and T. D. Hewson, 2020: Object-oriented composite analysis of warm-sector rainfall in North China. Mon. Wea. Rev., 148, 2719−2735, https://doi.org/10.1175/MWR-D-19-0038.1.
Fu, S.-M, W.-L. Li, and J. Ling, 2015: On the evolution of a long-lived mesoscale vortex over the Yangtze River Basin: Geometric features and interactions among systems of different scales. J. Geophys. Res., 120, 11 889−11 917,
Fu, S.-M, J.-H. Sun, J. Ling, H.-J. Wang, and Y.-C. Zhang, 2016: Scale interactions in sustaining persistent torrential rainfall events during the Mei-yu season. J. Geophys. Res., 121: 12 856−12 876,
Fu, S.-M., R.-X. Liu, and J.-H. Sun, 2018: On the scale interactions that dominate the maintenance of a persistent heavy rainfall event: A piecewise energy analysis. J. Atmos. Sci., 75, 907−925, https://doi.org/10.1175/JAS-D-17-0294.1.
He, L. F., T. Chen, and Q. Kong, 2016: A review of studies on prefrontal torrential rain in South China. Journal of Applied Meteorological Science, 27, 559−569, https://doi.org/10.11898/1001-7313.20160505. (in Chinese with English abstract
Hersbach, H., and Coauthors, 2020: The ERA5 global reanalysis. Quart. J. Roy. Meteor. Soc., 146, 1999−2049, https://doi.org/10.1002/qj.3803.
Holton, J. R., 2004: An Introduction to Dynamic Meteorology. Academic Press, San Diego, 535 pp.
Houston, A. L., 2017: The possible role of density current dynamics in the generation of low-level vertical vorticity in supercells. J. Atmos. Sci., 74, 3191−3208, https://doi.org/10.1175/JAS-D-16-0227.1.
Huang, S., 1986: Rainstorms During Pre–Rainy Season in South China. Guangdong Science and Technology Press, 58 pp.
Jiang, Z. N., D.-L. Zhang, R. D. Xia, and T. T. Qian, 2017: Diurnal variations of presummer rainfall over Southern China. J. Climate, 30, 755−773, https://doi.org/10.1175/JCLI-D-15-0666.1.
Jou, B. J. D., W. C. Lee, and R. H. Johnson, 2011: An overview of WMEX/TIMREX. The Global Monsoon System: Research and Forecast. 2nd ed., C.-P. Chang, Ed., World Scientific, 303−318.
Kucharski, F., and A. J. Thorpe, 2000: Local energetics of an idealized baroclinic wave using extended exergy. J. Atmos. Sci., 57, 3272−3284, https://doi.org/10.1175/1520-0469(2000)057<3272:LEOAIB>2.0.CO;2.
Kuo, Y. H., and G. T. J. Chen, 1990: The Taiwan area mesoscale experiment (TAMEX): An overview. Bull. Amer. Meteor. Soc., 71, 488−503, https://doi.org/10.1175/1520-0477(1990)071<0488:TTAMEA>2.0.CO;2.
Li, Z. H., Y. L. Luo, Y. Du, and J. C. L. Chan, 2020: Statistical characteristics of pre-summer rainfall over South China and associated synoptic conditions. J. Meteor. Soc. Japan, 98, 213−233, https://doi.org/10.2151/jmsj.2020-012.
Lin, L. X., Y. R. Feng, and Z. Huang, 2006: Technical Guidance on Weather Forecasting in Guangdong Province. China Meteorological Press, Beijing, 143−152.
Liu, L., Z. Y. Ding, Y. Chang, and M. Q. Chen, 2012: Application of parameterization of orographic gravity wave drag in WRF model to mechanism analysis of a heavy rain in warm sector over South China. Meteorological Science and Technology, 40, 232−240, https://doi.org/10.19517/j.1671-6345.2012.02.017. (in Chinese with English abstract
Liu, R. X., J. H. Sun, J. Wei, and S. M. Fu, 2016: Classification of persistent heavy rainfall events over South China and associated moisture source analysis. J. Meteor. Res., 30, 678−693, https://doi.org/10.1007/s13351-016-6042-x.
Liu, R. X., J. H. Sun, and B. F. Chen, 2019: Selection and classification of warm-sector heavy rainfall events over South China. Chinese Journal of Atmospheric Sciences, 43, 119−130, https://doi.org/10.3878/j.issn.1006-9895.1803.17245. (in Chinese with English abstract
Lorenz, E. N., 1955: Available potential energy and the maintenance of the general circulation. Tellus, 7, 157−167, https://doi.org/10.3402/tellusa.v7i2.8796.
Luo, Y. L., and Coauthors, 2017: The Southern China monsoon rainfall experiment (SCMREX). Bull. Amer. Meteor. Soc., 98, 999−1013, https://doi.org/10.1175/BAMS-D-15-00235.1.
Luo, Y. L., and Coauthors, 2020: Science and prediction of heavy rainfall over China: Research progress since the reform and opening-up of new China. J. Meteor. Res., 34, 427−459, https://doi.org/10.1007/s13351-020-0006-x.
Markowski, P. M., and Y. P. Richardson, 2010: Mesoscale Meteorology in Midlatitudes. Wiley–Blackwell, Hoboken, NJ, 407 pp.
Miao, C. S., Y. Y. Yang, J. H. Wang, and P. Li, 2018: A comparative study on characteristics and thermo-dynamic development mechanisms of two types of warm-sector heavy rainfall along the South China coast. Journal of Tropical Meteorology, 24, 494−507, https://doi.org/10.16555/j.1006-8775.2018.04.008.
Murakami, S., 2011: Atmospheric local energetics and energy interactions between mean and eddy fields. Part I: Theory. J. Atmos. Sci., 68, 760−768, https://doi.org/10.1175/2010JAS3664.1.
Plumb, R. A., 1983: A new look at the energy cycle. J. Atmos. Sci., 40, 1669−1688, https://doi.org/10.1175/1520-0469(1983)040<1669:ANLATE>2.0.CO;2.
Shen, Y., A. Y. Xiong, Y. Wang, and P. P. Xie, 2010: Performance of high-resolution satellite precipitation products over China. J. Geophys. Res., 115, D02114, https://doi.org/10.1029/2009JD012097.
Sun, J.-H., Y.-C. Zhang, R. X. Liu, S. M. Fu, and F. Y. Tian, 2019: A review of research on warm-sector heavy rainfall in China. Adv. Atmos. Sci., 36, 1299−1307, https://doi.org/10.1007/s00376-019-9021-1.
Tao, S. Y., 1980: Rainstorms in China. Science Press, Beijing, 225 pp. (in Chinese)
Tian, F. Y., Y. G. Zheng, X. L. Zhang, T. Zhang, Y. J. Lin, X. W. Zhang, and W. J. Zhu, 2018: Structure, triggering and maintenance mechanism of convective systems during the Guangzhou extreme rainfall on 7 May 2017,. Meteorological Monthly, 44, 469−484, https://doi.org/10.7519/j.issn.1000-0526.2018.04.001. (in Chinese with English abstract
Wang, Y. P., X. P. Cui, X. F. Li, W. L. Zhang, and Y. J. Huang, 2016: Kinetic energy budget during the genesis period of tropical cyclone Durian (2001) in the South China Sea. Mon. Wea. Rev., 144, 2831−2854, https://doi.org/10.1175/MWR-D-15-0042.1.
Weare, B. C., and P. R. E. Newell, 1977: Empirical orthogonal analysis of Atlantic Ocean surface temperature. Quart. J. Roy. Meteor. Soc., 103, 467−478, https://doi.org/10.1002/qj.49710343707.
Wu, N. G., X. Ding, Z. P. Wen, G. X. Chen, Z. Y. Meng, L. X. Lin, and J. Z. Min, 2020a: Contrasting frontal and warm-sector heavy rainfalls over South China during the early-summer rainy season. Atmospheric Research, 235, 104693, https://doi.org/10.1016/j.atmosres.2019.104693.
Wu, N. G., X. R. Zhuang, J. Z. Min, and Z. Y. Meng, 2020b: Practical and intrinsic predictability of a warm-sector torrential rainfall event in the South China monsoon region. J. Geophys. Res., 125, e2019JD031313, https://doi.org/10.1029/2019JD031313.
Wu, Z. F., J. J. Cai, L. X. Lin, S. Hu, H. L. Zhang, and K. H. Wei, 2018: Analysis of mesoscale systems and predictability of the torrential rain process in Guangzhou on 7 May 2017,. Meteorological Monthly, 44, 485−499, https://doi.org/10.7519/j.issn.1000-0526.2018.04.002. (in Chinese with English abstract
Xu, W. X., E. J. Zipser, Y.-L. Chen, C. T. Liu, Y.-C. Liou, W.-C. Lee, and B. J.-D. Jou, 2012: An orography-associated extreme rainfall event during TiMREX: Initiation, storm evolution, and maintenance. Mon. Wea. Rev., 140, 2555−2574, https://doi.org/10.1175/MWR-D-11-00208.1.
Xu, Y., J.-H. Yan, Q. Q. Wang, and J.-B. Dong, 2013: A low-level gravity wave triggering mechanism for rainstorm of warm zone in South China. Plateau Meteorology, 32, 1050−1061, https://doi.org/10.7522/j.issn.1000-0534.2012.00100. (in Chinese with English abstract
Zhang, R. H., Y. Q. Ni, L. P. Liu, Y. L. Luo, and Y. H. Wang, 2011: South China heavy rainfall experiments (SCHeREX). J. Meteor. Soc. Japan, 89A, 153−166, https://doi.org/10.2151/jmsj.2011-A10.
Zhao, S. X., Z. Y. Tao, J. H. Sun, N. F. Bei, 2004: Study on Mechanism of Formation and Development of Heavy Rainfalls on Meiyu Front in Yangtze River. China Meteorological Press, Beijing, 282 pp. (in Chinese)
Zhou, X. J., 2000: Study of Experiment of Heavy Rainfall across the Taiwan Strait and its Neighbors. China Meteorological Press, Beijing, 370 pp. (in Chinese)