Baker, L. H., A. C. Rudd, S. Migliorini, and R. N. Bannister, 2014: Representation of model error in a convective-scale ensemble prediction system. Nonlinear Processes in Geophysics, 21, 19−39, https://doi.org/10.5194/npg-21-19-2014.
Baldauf, M., A. Seifert, J. Förstner, D. Majewski, M. Raschendorfer, and T. Reinhardt, 2011: Operational convective-scale numerical weather prediction with the COSMO model: Description and sensitivities. Mon. Wea. Rev., 139, 3887−3905, https://doi.org/10.1175/MWR-D-10-05013.1.
Berner, J., G. J. Shutts, M. Leutbecher, and T. N. Palmer, 2009: A spectral stochastic kinetic energy backscatter scheme and its impact on flow-dependent predictability in the ECMWF ensemble prediction system. J. Atmos. Sci., 66, 603−626, https://doi.org/10.1175/2008JAS2677.1.
Birgin, E. G., J. M. Martínez, and M. Raydan, 2001: Algorithm 813: SPG-software for convex-constrained optimization. ACM Transactions on Mathematical Software, 27, 340−349, https://doi.org/10.1145/502800.502803.
Bouttier, F., B. Vié, O. Nuissier, and L. Raynaud, 2012: Impact of stochastic physics in a convection-permitting ensemble. Mon. Wea. Rev., 140, 3706−3721, https://doi.org/10.1175/MWR-D-12-00031.1.
Bowler, N. E., A. Arribas, K. R. Mylne, K. B. Robertson, and S. E. Beare, 2008: The MOGREPS short-range ensemble prediction system. Quart. J. Roy. Meteorol. Soc., 134, 703−722, https://doi.org/10.1002/qj.234.
Buizza, R., M. Milleer, and T. N. Palmer, 1999: Stochastic representation of model uncertainties in the ECMWF ensemble prediction system. Quart. J. Roy. Meteorol. Soc., 125, 2887−2908, https://doi.org/10.1002/qj.49712556006.
Charron, M., G. Pellerin, L. Spacek, P. L. Houtekamer, N. Gagnon, H. L. Mitchell, and L. Michelin, 2010: Toward random sampling of model error in the Canadian ensemble prediction system. Mon. Wea. Rev., 138, 1877−1901, https://doi.org/10.1175/2009MWR3187.1.
Chen, F., and J. Dudhia, 2001: Coupling an advanced land surface-hydrology model with the Penn State-NCAR MM5 modeling system. Part I: Model implementation and sensitivity. Mon. Wea. Rev., 129, 569−585, https://doi.org/10.1175/1520-0493(2001)129<0569:CAALSH>2.0.CO;2.
Christensen, H. M., S.-J. Lock, I. M. Moroz, and T. N. Palmer, 2017: Introducing independent patterns into the Stochastically Perturbed Parametrization Tendencies (SPPT) scheme. Quart. J. Roy. Meteorol. Soc., 143, 2168−2181, https://doi.org/10.1002/qj.3075.
Clark, A. J., and Coauthors, 2012: An overview of the 2010 hazardous weather testbed experimental forecast program spring experiment. Bull. Amer. Meteorol. Soc., 93, 55−74, https://doi.org/10.1175/BAMS-D-11-00040.1.
Clark, P., N. Roberts, H. Lean, S. P. Ballard, and C. Charlton-Perez, 2016: Convection-permitting models: A step-change in rainfall forecasting. Meteorological Applications, 23, 165−181, https://doi.org/10.1002/met.1538.
Duan, W. S., and R. Zhang, 2010: Is model parameter error related to a significant spring predictability barrier for El Niño events? Results from a theoretical model Adv. Atmos. Sci., 27, 1003−1013, https://doi.org/10.1007/s00376-009-9166-4.
Duan, W. S., and Z. H. Huo, 2016: An approach to generating mutually independent initial perturbations for ensemble forecasts: Orthogonal conditional nonlinear optimal perturbations. J. Atmos. Sci., 73, 997−1014, https://doi.org/10.1175/JAS-D-15-0138.1.
Dudhia, J., 1989: Numerical study of convection observed during the winter monsoon experiment using a mesoscale two-dimensional model. J. Atmos. Sci., 46, 3077−3107, https://doi.org/10.1175/1520-0469(1989)046<3077:NSOCOD>2.0.CO;2.
Fresnay, S., A. Hally, C. Garnaud, E. Richard, and D. Lambert, 2012: Heavy precipitation events in the Mediterranean: Sensitivity to cloud physics parameterisation uncertainties. Natural Hazards and Earth System Sciences, 12, 2671−2688, https://doi.org/10.5194/nhess-12-2671-2012.
Gebhardt, C., S. E. Theis, M. Paulat, and Z. B. Bouallègue, 2011: Uncertainties in COSMO-DE precipitation forecasts introduced by model perturbations and variation of lateral boundaries. Atmospheric Research, 100, 168−177, https://doi.org/10.1016/j.atmosres.2010.12.008.
Gerard, L., 2007: An integrated package for subgrid convection, clouds and precipitation compatible with meso-gamma scales. Quart. J. Roy. Meteorol. Soc., 133, 711−730, https://doi.org/10.1002/qj.58.
Hacker, J. P., and Coauthors, 2011: The U.S. Air Force Weather Agency’s mesoscale ensemble: Scientific description and performance results. Tellus A, 63, 625−641, https://doi.org/10.1111/j.1600-0870.2010.00497.x.
Hagelin, S., J. Son, R. Swinbank, A. McCabe, N. Roberts, and W. Tennant, 2017: The met office convective-scale ensemble, MOGREPS-UK. Quart. J. Roy. Meteorol. Soc., 143, 2846−2861, https://doi.org/10.1002/qj.3135.
Hohenegger, C., and C. Schar, 2007: Atmospheric predictability at synoptic versus cloud-resolving scales. Bull. Amer. Meteorol. Soc., 88, 1783−1794, https://doi.org/10.1175/BAMS-88-11-1783.
Hong, S. Y., and H. L. Pan, 1996: Nonlocal boundary layer vertical diffusion in a medium-range forecast model. Mon. Wea. Rev., 124, 2322−2339, https://doi.org/10.1175/1520-0493(1996)124<2322:NBLVDI>2.0.CO;2.
Hong, S. Y., and J. O. J. Lim, 2006: The WRF single-moment 6-class microphysics scheme (WSM6). Journal of the Korean Meteorological Society, 42, 129−151.
Honnert, R., F. Couvreux, V. Masson, and D. Lancz, 2016: Sampling the structure of convective turbulence and implications for grey-zone parametrizations. Bound.-Layer Meteorol., 160, 133−156, https://doi.org/10.1007/s10546-016-0130-4.
Hou, D. C., Z. Toth, and Y. J. Zhu, 2006: A stochastic parameterization scheme within NCEP global ensemble forecast system. Extended abstract, the 18th AMS Conf. on Probability and Statistics in the Atmospheric Sciences, Atlanta, Georgia, Amer. Meteor. Soc.
Hou, D. C., Z. Toth, Y. J. Zhu, and W. Y. Yang, 2008: Impact of a stochastic perturbation scheme on global ensemble forecast. Extended abstract, the 19th AMS Conf. on Probability and Statistics, New Orleans, Louisiana, Amer. Meteor. Soc.
Iversen, T., A. Deckmyn, C. Santos, K. Sattler, J. B. Bremnes, H. Feddersen, and I.-L. Frogner, 2011: Evaluation of ‘GLAMEPS’-a proposed multimodel EPS for short range forecasting. Tellus A, 63, 513−530, https://doi.org/10.1111/j.1600-0870.2010.00507.x.
Johnson, A., X. G. Wang, and M. Xue, 2014: Multiscale characteristics and evolution of perturbations for warm season convection-allowing precipitation forecasts: Dependence on background flow and method of perturbation. Mon. Wea. Rev., 142, 1053−1073, https://doi.org/10.1175/MWR-D-13-00204.1.
Leutbecher, M., and Coauthors, 2017: Stochastic representations of model uncertainties at ECMWF: State of the art and future vision. Quart. J. Roy. Meteorol. Soc., 143, 2315−2339, https://doi.org/10.1002/qj.3094.
Mascaro, G., E. R. Vivoni, and R. Deidda, 2010: Implications of ensemble quantitative precipitation forecast errors on distributed streamflow forecasting. Journal of Hydrometeorology, 11, 69−86, https://doi.org/10.1175/2009JHM1144.1.
McCabe, A., R. Swinbank, W. Tennant, and A. Lock, 2016: Representing model uncertainty in the Met Office convection-permitting ensemble prediction system and its impact on fog forecasting. Quart. J. Roy. Meteorol. Soc., 142, 2897−2910, https://doi.org/10.1002/qj.2876.
Melhauser, C., F. Q Zhang, Y. H. Weng, Y. Jin, H. Jin, and Q. Y. Zhao, 2017: A multiple-model convection-permitting ensemble examination of the probabilistic prediction of tropical cyclones: Hurricanes Sandy (2012) and Edouard (2014). Wea. Forecasting, 32, 665−688, https://doi.org/10.1175/WAF-D-16-0082.1.
Mlawer, E. J., S. J. Taubman, P. D. Brown, M. J. Iacono, and S. A. Clough, 1997: Radiative transfer for inhomogeneous atmospheres: RRTM, a validated correlated-k model for the longwave. J. Geophys. Res.: Atmos., 102, 16 663−16 682, https://doi.org/10.1029/97JD00237.
Mu, M., W. S. Duan, and B. Wang, 2003: Conditional nonlinear optimal perturbation and its applications. Nonlinear Processes in Geophysics, 10, 493−501, https://doi.org/10.5194/npg-10-493-2003.
Mu, M., W. S. Duan, Q. Wang, and R. Zhang, 2010: An extension of conditional nonlinear optimal perturbation approach and its applications. Nonlinear Processes in Geophysics, 17, 211−220, https://doi.org/10.5194/npg-17-211-2010.
Ollinaho, P., and Coauthors, 2017: Towards process-level representation of model uncertainties: Stochastically perturbed parametrizations in the ECMWF ensemble. Quart. J. Roy. Meteorol. Soc., 143, 408−422, https://doi.org/10.1002/qj.2931.
Peralta, C., Z. Ben Bouallègue, S. E. Theis, C. Gebhardt, and M. Buchhold, 2012: Accounting for initial condition uncertainties in COSMO-DE-EPS. J. Geophys. Res.: Atmos., 117, D07108, https://doi.org/10.1029/2011JD016581.
Qin, X. H., W. S. Duan, and H. Xu, 2020: Sensitivity to tendency perturbations of tropical cyclone short-range intensity forecasts generated by WRF. Adv. Atmos. Sci., 37, 291−306, https://doi.org/10.1007/s00376-019-9187-6.
Qu, Y. M., W. S. Lu, R. H. Cai, Y. Yang, D. M. Jiang, and L. P. Liu, 2010: Design and experiment of GRAPES-Meso cloud analysis system. Meteorological Monthly, 36, 37−45, https://doi.org/10.7519/j.issn.1000-0526.2010.10.006. (in Chinese with English abstract)
Romine, G. S., C. S. Schwartz, J. Berner, K. R. Fossell, C. Snyder, J. L. Anderson, and M. L. Weisman, 2014: Representing forecast error in a convection-permitting ensemble system. Mon. Wea. Rev., 142, 4519−4541, https://doi.org/10.1175/MWR-D-14-00100.1.
Schwartz, C. S., G. S. Romine, R. A. Sobash, K. R. Fossell, and M. L. Weisman, 2015: NCAR’s experimental real-time convection-allowing ensemble prediction system. Wea. Forecasting, 30, 1645−1654, https://doi.org/10.1175/WAF-D-15-0103.1.
Seity, Y., P. Brousseau, S. Malardel, G. Hello, P. Bénard, F. Bouttier, C. Lac, and V. Masson, 2011: The AROME-France convective-scale operational model. Mon. Wea. Rev., 139, 976−991, https://doi.org/10.1175/2010MWR3425.1.
Shutts, G., 2005: A kinetic energy backscatter algorithm for use in ensemble prediction systems. Quart. J. Roy. Meteorol. Soc., 131, 3079−3102, https://doi.org/10.1256/qj.04.106.
Tao, L. J., and W. S. Duan, 2019: Using a nonlinear forcing singular vector approach to reduce model error effects in ENSO forecasting. Wea. Forecasting, 34, 1321−1342, https://doi.org/10.1175/WAF-D-19-0050.1.
Wang, B., and X. W. Tan, 2010: Conditional nonlinear optimal perturbations: Adjoint-free calculation method and preliminary test. Mon. Wea. Rev., 138, 1043−1049, https://doi.org/10.1175/2009MWR3022.1.
Weyn, J. A., and D. R. Durran, 2018: Ensemble spread grows more rapidly in higher-resolution simulations of deep convection. J. Atmos. Sci., 75, 3331−3345, https://doi.org/10.1175/JAS-D-17-0332.1.
Yin, X. D., J. J. Liu, and B. Wang, 2015: Nonlinear ensemble parameter perturbation for climate models. J. Climate, 28, 1112−1125, https://doi.org/10.1175/JCLI-D-14-00244.1.
Yu, Y. S., M. Mu, and W. S. Duan, 2012: Does model parameter error cause a significant “spring predictability barrier” for El Niño events in the Zebiak-Cane model? J. Climate, 25, 1263−1277, https://doi.org/10.1175/2011JCLI4022.1.
Yuan, Y., X. L. Li, J. Chen, and Y. Xia, 2016: Stochastic parameterization toward model uncertainty for the GRAPES mesoscale ensemble prediction system. Meteorological Monthly, 42, 1161−1175, https://doi.org/10.7519/j.issn.1000-0526.2016.10.001. (in Chinese with English abstract)
Zhang, X. W., W. Y. Tang, L. Q. Fan, J. Sheng, X. W. Cai, T. Zhang, and X. L. Zhang, 2018: Evaluation on the application of GRAPES-CR in forecasting severe convective weather. CMA, Special Funds for GRAPES, No. 400288, 75 pp. (in Chinese)
Zhu, L. J., J. D. Gong, L. P. Huang, D. H. Chen, Y. Jiang, and L. T. Deng, 2017: Three-dimensional cloud initial field created and applied to GRAPES numerical weather prediction nowcasting. Journal of Applied Meteorological Science, 28, 38−51, https://doi.org/10.11898/1001-7313.20170104. (in Chinese with English abstract)