Abulikemu, A., X. Xu, Y. Wang, J. F. Ding, S. S. Zhang, and W. Q. Shen, 2016: A modeling study of convection initiation prior to the merger of a sea-breeze front and a gust front. Atmospheric Research, 182, 10−19, https://doi.org/10.1016/j.atmosres.2016.07.003.
Abulikemu, A., Y. Wang, R. X. Gao, Y. Wang, and X. Xu, 2019: A numerical study of convection initiation associated with a gust front in Bohai Bay region, North China. J. Geophys. Res., 124, 13 843−13 860,
Barnes, S. L., 1973: Mesoscale objective map analysis using weighted time-series observations. NOAA Tech. Memo. ERL NSSL-62, National Severe Storms Laboratory, Norman, 60 pp.
Benjamin, S. G., and Coauthors, 2004: An hourly assimilation–forecast cycle: The RUC. Mon. Wea. Rev., 132, 495−518, https://doi.org/10.1175/1520-0493(2004)132<0495:AHACTR>2.0.CO;2.
Chen, G., and Coauthors, 2022: Variability of microphysical characteristics in the “21.7” henan extremely heavy rainfall event. Sci. China Earth Sci., 65,
Chen, X. C., F. Q. Zhang, and K. Zhao, 2016: Diurnal variations of the land–sea breeze and its related precipitation over South China. J. Atmos. Sci., 73, 4793−4815, https://doi.org/10.1175/JAS-D-16-0106.1.
Chen, X. C., F. Q. Zhang, and K. Zhao, 2017: Influence of monsoonal wind speed and moisture content on intensity and diurnal variations of the mei-yu season coastal rainfall over South China. J. Atmos. Sci., 74, 2835−2856, https://doi.org/10.1175/JAS-D-17-0081.1.
Davis, C. A., and T. J. Galarneau Jr., 2009: The vertical structure of mesoscale convective vortices. J. Atmos. Sci., 66, 686−704, https://doi.org/10.1175/2008JAS2819.1.
Davis, C. A., and W.-C. Lee, 2012: Mesoscale analysis of heavy rainfall episodes from sowmex/timrex. J. Atmos. Sci., 69, 521−537, https://doi.org/10.1175/JAS-D-11-0120.1.
Ding, Y. H., 2015: On the study of the unprecedented heavy rainfall in Henan Province during 4−8 August 1975: Review and assessment. Acta Meteorologica Sinica, 73, 411−424. (in Chinese with English abstract)
Ding, Y. H., Z. Y. Cai, and J. S. Li, 1978: A case study on the excessively severe rainstrom in Henan Province, early in August, 1975,. Chinese Journal of Atmospherica Sciences, 2(4), 276−289, https://doi.org/10.3878/j.issn.1006-9895.1978.04.02. (in Chinese with English abstract
Doswell III, C. A., H. E. Brooks, and R. A. Maddox, 1996: Flash flood forecasting: An ingredients-based methodology. Wea. Forecasting, 11, 560−581, https://doi.org/10.1175/1520-0434(1996)011<0560:FFFAIB>2.0.CO;2.
Du, Y., and G. X. Chen, 2019: Heavy rainfall associated with double low-level jets over Southern China. Part II: Convection initiation. Mon. Wea. Rev., 147, 543−565, https://doi.org/10.1175/MWR-D-18-0102.1.
Fu, S.-M., R.-X. Liu, and J.-H. Sun, 2018: On the scale interactions that dominate the maintenance of a persistent heavy rainfall event: A piecewise energy analysis. J. Atmos. Sci., 75, 907−925, https://doi.org/10.1175/JAS-D-17-0294.1.
Gilmore, M. S., J. M. Straka, and E. N. Rasmussen, 2004: Precipitation uncertainty due to variations in precipitation particle parameters within a simple microphysics scheme. Mon. Wea. Rev., 132, 2610−2627, https://doi.org/10.1175/MWR2810.1.
Hersbach, H., and Coauthors, 2020: The ERA5 global reanalysis. Quart. J. Roy. Meteor. Soc., 146, 1999−2049, https://doi.org/10.1002/qj.3803.
Houze, R. A. Jr., 2004: Mesoscale convective systems. Rev. Geophys., 42, RG4003, https://doi.org/10.1029/2004RG000150.
Hua, S. F., X. Xu, and B. J. Chen, 2020: Influence of multiscale orography on the initiation and maintenance of a precipitating convective system in North China: A case study. J. Geophys. Res., 125, e2019JD031731, https://doi.org/10.1029/2019JD031731.
Huang, H., G. F. Zhang, K. Zhao, and S. E. Giangrande, 2017: A hybrid method to estimate specific differential phase and rainfall with linear programming and physics constraints. IEEE Trans. Geosci. Remote Sens., 55, 96−111, https://doi.org/10.1109/TGRS.2016.2596295.
Iacono, M. J., J. S. Delamere, E. J. Mlawer, M. W. Shephard, S. A. Clough, and W. D. Collins, 2008: Radiative forcing by long-lived greenhouse gases: Calculations with the aer radiative transfer models. J. Geophys. Res., 113, D13103, https://doi.org/10.1029/2008JD009944.
Joyce, R. J., J. E. Janowiak, P. A. Arkin, and P. P. Xie, 2004: Cmorph: A method that produces global precipitation estimates from passive microwave and infrared data at high spatial and temporal resolution. Journal of Hydrometeorology, 5, 487−503, https://doi.org/10.1175/1525-7541(2004)005<0487:CAMTPG>2.0.CO;2.
Li, J., and Y.-L. Chen, 1998: Barrier jets during TAMEX. Mon. Wea. Rev., 126, 959−971, https://doi.org/10.1175/1520-0493(1998)126<0959:BJDT>2.0.CO;2.
Liu, X., Y. L. Luo, Z. Y. Guan, and D.-L. Zhang, 2018: An extreme rainfall event in coastal South China during SCMREX-2014: Formation and roles of rainband and echo trainings. J. Geophys. Res., 123, 9256−9278, https://doi.org/10.1029/2018JD028418.
Luo, L. P., M. Xue, K. F. Zhu, and B. W. Zhou, 2018: Explicit prediction of hail in a long-lasting multicellular convective system in eastern China using multimoment microphysics schemes. J. Atmos. Sci., 75, 3115−3137, https://doi.org/10.1175/JAS-D-17-0302.1.
Luo, Y. L., Y. Gong, and D.-L. Zhang, 2014: Initiation and organizational modes of an extreme-rain-producing mesoscale convective system along a mei-yu front in East China. Mon. Wea. Rev., 142, 203−221, https://doi.org/10.1175/MWR-D-13-00111.1.
Luo, Y. L., and Coauthors, 2017: The Southern China monsoon rainfall experiment (SCMREX). Bull. Amer. Meteor. Soc., 98, 999−1013, https://doi.org/10.1175/BAMS-D-15-00235.1.
Maddox, R. A., C. F. Chappell, and L. R. Hoxit, 1979: Synoptic and meso-α scale aspects of flash flood events. Bull. Amer. Meteor. Soc., 60, 115−123, https://doi.org/10.1175/1520-0477-60.2.115.
Meng, Z. Y., F. Q. Zhang, P. Markowski, D. C. Wu, and K. Zhao, 2012: A modeling study on the development of a bowing structure and associated rear inflow within a squall line over South China. J. Atmos. Sci., 69, 1182−1207, https://doi.org/10.1175/JAS-D-11-0121.1.
Miranda, P. M. A., and I. N. James, 1992: Non-linear three-dimensional effects on gravity-wave drag: Splitting flow and breaking waves. Quart. J. Roy. Meteor. Soc., 118, 1057−1081, https://doi.org/10.1002/qj.49711850803.
Nielsen, E. R., and R. S. Schumacher, 2018: Dynamical insights into extreme short-term precipitation associated with supercells and mesovortices. J. Atmos. Sci., 75, 2983−3009, https://doi.org/10.1175/JAS-D-17-0385.1.
Nielsen, E. R., and R. S. Schumacher, 2020: Observations of extreme short-term precipitation associated with supercells and mesovortices. Mon. Wea. Rev., 148, 159−182, https://doi.org/10.1175/MWR-D-19-0146.1.
Olson, J. B., J. S. Kenyon, W. A. Angevine, J. M. Brown, M. Pagowski, and K. Sušelj, 2019: A description of the mynn-edmf scheme and the coupling to other components in WRF-ARW. NOAA. Tech. Memo. OAR. GSD, 61, 37 pp.
Overland, J. E., 1984: Scale analysis of marine winds in straits and along mountainous coasts. Mon. Wea. Rev., 112, 2530−2534, https://doi.org/10.1175/1520-0493(1984)112<2530:SAOMWI>2.0.CO;2.
Overland, J. E., and N. A. Bond, 1995: Observations and scale analysis of coastal wind jets. Mon. Wea. Rev., 123, 2934−2941, https://doi.org/10.1175/1520-0493(1995)123<2934:OASAOC>2.0.CO;2.
Raymond, D. J., and H. Jiang, 1990: A theory for long-lived mesoscale convective systems. J. Atmos Sci, 47, 3067−3077, https://doi.org/10.1175/1520-0469(1990)047<3067:ATFLLM>2.0.CO;2.
Schumacher, R. S., 2017: Heavy rainfall and flash flooding. Oxford Research Encyclopedia of Natural Hazard Science, 24, Oxford University Press,
Schumacher, R. S., and R. H. Johnson, 2005: Organization and environmental properties of extreme-rain-producing mesoscale convective systems. Mon. Wea. Rev., 133, 961−976, https://doi.org/10.1175/MWR2899.1.
Schumacher, R. S., and R. H. Johnson, 2006: Characteristics of U.S. extreme rain events during 1999–2003,. Wea. Forecasting, 21, 69−85, https://doi.org/10.1175/WAF900.1.
Shen, Y., P. Zhao, Y. Pan, and J. J. Yu, 2014: A high spatiotemporal gauge-satellite merged precipitation analysis over China. J. Geophys. Res., 119, 3063−3075, https://doi.org/10.1002/2013JD020686.
Skamarock, W. C., and Coauthors, 2008: A description of the advanced research WRF version 3. No. NCAR/TN-475+STR, 113 pp, http://dx.doi.org/10.5065/D68S4MVH.
Su, T., and G. Q. Zhai, 2017: The role of convectively generated gravity waves on convective initiation: A case study. Mon. Wea. Rev., 145, 335−359, https://doi.org/10.1175/MWR-D-16-0196.1.
Sun, J. H., Y. C. Zhang, R. X. Liu, S. M. Fu, and F. Y. Tian, 2019: A review of research on warm-sector heavy rainfall in China. Adv. Atmos. Sci., 36, 1299−1307, https://doi.org/10.1007/s00376-019-9021-1.
Tewari, M., and Coauthors, 2004: Implementation and verification of the unified NOAH land-surface model in the WRF model. Proc. 20th Conference on Weather Analysis and Forecasting/16th Conference on Numerical Weather Prediction, Seattle, WA, US, American Meteorological Society, 11−15.
Trapp, R. J., and M. L. Weisman, 2003: Low-level mesovortices within squall lines and bow echoes. Part II: Their genesis and implications. Mon. Wea. Rev., 131, 2804−2823, https://doi.org/10.1175/1520-0493(2003)131<2804:LMWSLA>2.0.CO;2.
Trier, S. B., and C. A. Davis, 2002: Influence of balanced motions on heavy precipitation within a long-lived convectively generated vortex. Mon. Wea. Rev., 130, 877−899, https://doi.org/10.1175/1520-0493(2002)130<0877:IOBMOH>2.0.CO;2.
Trier, S. B., C. A. Davis, and W. C. Skamarock, 2000: Long-lived mesoconvective vortices and their environment. Part II: Induced thermodynamic destabilization in idealized simulations. Mon. Wea. Rev., 128, 3396−3412, https://doi.org/10.1175/1520-0493(2000)128<3396:LLMVAT>2.0.CO;2.
Trier, S. B., C. A. Davis, D. A. Ahijevych, M. L. Weisman, and G. H. Bryan, 2006: Mechanisms supporting long-lived episodes of propagating nocturnal convection within a 7-day WRF model simulation. J. Atmos. Sci., 63, 2437−2461, https://doi.org/10.1175/JAS3768.1.
Wang, H., Y. L. Luo, and B. J.-D. Jou, 2014: Initiation, maintenance, and properties of convection in an extreme rainfall event during SCMREX: Observational analysis. J. Geophys. Res., 119, 13 206−13 232,
Wang, Q. W., M. Xue, and Z. M. Tan, 2016: Convective initiation by topographically induced convergence forcing over the dabie mountains on 24 June 2010,. Adv. Atmos. Sci., 33, 1120−1136, https://doi.org/10.1007/s00376-016-6024-z.
Wang, Q. W., Y. Zhang, K. F. Zhu, Z. M. Tan, and M. Xue, 2021: A case study of the initiation of parallel convective lines back-building from the south side of a mei-yu front over complex terrain. Adv. Atmos. Sci., 38, 717−736, https://doi.org/10.1007/s00376-020-0216-2.
Weisman, M. L., and R. Rotunno, 2004: “A theory for strong long-lived squall lines” revisited. J. Atmos. Sci., 61, 361−382, https://doi.org/10.1175/1520-0469(2004)061<0361:ATFSLS>2.0.CO;2.
Xia, R. D., and D.-L. Zhang, 2019: An observational analysis of three extreme rainfall episodes of 19–20 July 2016 along the Taihang Mountains in North China. Mon. Wea. Rev., 147, 4199−4220, https://doi.org/10.1175/MWR-D-18-0402.1.
Xu, X., M. Xue, and Y. Wang, 2015a: Mesovortices within the 8 May 2009 bow echo over the central United States: Analyses of the characteristics and evolution based on Doppler radar observations and a high-resolution model simulation. Mon. Wea. Rev., 143, 2266−2290, https://doi.org/10.1175/MWR-D-14-00234.1.
Xu, X., M. Xue, and Y. Wang, 2015b: The genesis of mesovortices within a real-data simulation of a bow echo system. J. Atmos. Sci., 72, 1963−1986, https://doi.org/10.1175/JAS-D-14-0209.1.
Xu, X., M. Xue, Y. Wang, and H. Huang, 2017: Mechanisms of secondary convection within a mei-yu frontal mesoscale convective system in Eastern China. J. Geophys. Res., 122, 47−64, https://doi.org/10.1002/2016JD026017.
Yang, Y., M. Uddstrom, M. Revell, S. Moore, and R. Turner, 2017: Damaging southerly winds caused by barrier jets in the cook strait and wellington region of New Zealand. Mon. Wea. Rev., 145, 1203−1220, https://doi.org/10.1175/MWR-D-16-0159.1.
Yin, J. F., H. D. Gu, X. D. Liang, M. Yu, J. S. Sun, Y. X. Xie, F. Li, and C. Wu, 2022: A possible dynamic mechanism for rapid production of the extreme hourly rainfall in Zhengzhou City on 20 July 2021,. Journal of Meteorological Research, 36, 6−25, https://doi.org/10.1007/s13351-022-1166-7.
Zeng, W. X., G. X. Chen, Y. Du, and Z. P. Wen, 2019: Diurnal variations of low-level winds and precipitation response to large-scale circulations during a heavy rainfall event. Mon. Wea. Rev., 147, 3981−4004, https://doi.org/10.1175/MWR-D-19-0131.1.
Zhang, D. L., Y. H. Lin, P. Zhao, X. D. Yu, S. Q. Wang, H. W. Kang, and Y. H. Ding, 2013: The Beijing extreme rainfall of 21 July 2012: “right results” but for wrong reasons. Geophys. Res. Letters, 40, 1426−1431, https://doi.org/10.1002/grl.50304.
Zhang, M., and D.-L. Zhang, 2012: Subkilometer simulation of a torrential-rain-producing mesoscale convective system in East China. Part I: Model verification and convective organization. Mon. Wea. Rev., 140, 184−201, https://doi.org/10.1175/MWR-D-11-00029.1.
Zhang, M. R., and Z. Y. Meng, 2019: Warm-sector heavy rainfall in Southern China and its WRF simulation evaluation: A low-level-jet perspective. Mon. Wea. Rev., 147, 4461−4480, https://doi.org/10.1175/MWR-D-19-0110.1.
Zhang, S. S., and Coauthors, 2020: A modeling study of an atmospheric bore associated with a nocturnal convective system over China. J. Geophys. Res., 125, e2019JD032279, https://doi.org/10.1029/2019JD032279.
Zhang, X., H. Yang, X. M. Wang, L. Shen, D. Wang, and H. Li, 2021: Analysis on characteristic and abnormality of atmospheric circulations of the July 2021 extreme precipitation in Henan. Transactions of Atmospheric Sciences, 44, 672−687, https://doi.org/10.13878/j.cnki.dqkxxb.20210907001.
Zhang, Y. C., J. H. Sun, and S. M. Fu, 2017: Main energy paths and energy cascade processes of the two types of persistent heavy rainfall events over the Yangtze River–Huaihe River Basin. Adv. Atmos. Sci., 34, 129−143, https://doi.org/10.1007/s00376-016-6117-8.
Zhang, Y. H., M. Xue, K. F. Zhu, and B. W. Zhou, 2019: What is the main cause of diurnal variation and nocturnal peak of summer precipitation in Sichuan Basin, China? The key role of boundary layer low-level jet inertial oscillations J. Geophys. Res., 124, 2643−2664, https://doi.org/10.1029/2018JD029834.
Zhou, A., K. Zhao, W.-C. Lee, H. Huang, D. M. Hu, and P. L. Fu, 2020: VDRAS and polarimetric radar investigation of a bow echo formation after a squall line merged with a preline convective cell. J. Geophys. Res., 125, e2019JD031719, https://doi.org/10.1029/2019JD031719.
Zhu, K., C. Zhang, M. Xue, and N. Yang, 2022: Predictability and skill of convection-permitting ensemble forecast systems in predicting the record-breaking “21•7 ” extreme rainfall event in Henan Province, China. Science China Earth Sciences, 65,