An, J. L., B. Zhu, H. L. Wang, Y. Y. Li, X. Lin, and H. Yang, 2014: Characteristics and source apportionment of VOCs measured in an industrial area of Nanjing, Yangtze River Delta, China. Atmos. Environ., 97, 206−214, https://doi.org/10.1016/j.atmosenv.2014.08.021.
Bohren, C. F., and D. R. Huffman, 2008: Absorption and Scattering of Light by Small Particles. John Wiley & Sons.
Bond, T. C., D. G. Streets, K. F. Yarber, S. M. Nelson, J. H. Woo, and Z. Klimont, 2004: A technology-based global inventory of black and organic carbon emissions from combustion. J. Geophys. Res., 109, D14203, https://doi.org/10.1029/2003JD003697.
Bond, T. C., and Coauthors, 2013: Bounding the role of black carbon in the climate system: a scientific assessment. J. Geophys. Res., 118, 5380−552, https://doi.org/10.1002/jgrd.50171.
Castro, T., S. Madronich, S. Rivale, A. Muhlia, and B. Mar, 2001: The influence of aerosols on photochemical smog in Mexico City. Atmos. Environ., 35(10), 1765−1772, https://doi.org/10.1016/S1352-2310(00)00449-0.
Chen, H. M., and Coauthors, 2019: Characteristics of ozone and particles in the near-surface atmosphere in the urban area of the Yangtze River Delta, China. Atmospheric Chemistry and Physics, 19(7), 4153−4175, https://doi.org/10.5194/acp-19-4153-2019.
Chung, S. H., and J. H. Seinfeld, 2005: Climate response of direct radiative forcing of anthropogenic black carbon. J. Geophys. Res., 110, D11102, https://doi.org/10.1029/2004JD005441.
Crutzen, P., 1973: A discussion of the chemistry of some minor constituents in the stratosphere and troposphere. Pure Appl. Geophys., 106, 1385−1399, https://doi.org/10.1007/BF00881092.
Dickerson, R. R., S. Kondragunta, G. Stenchikov, K. L. Civerolo, B. G. Doddridge, and B. N. Holben, 1997: The impact of aerosols on solar ultraviolet radiation and photochemical smog. Science, 278, 827−830, https://doi.org/10.1126/science.278.5339.827.
Dong, Y. M., J. Li, J. P. Guo, Z. J. Jiang, Y. Q. Chu, L. Chang, Y. Yang, and H. Liao, 2020: The impact of synoptic patterns on summertime ozone pollution in the North China Plain. Science of the Total Environment, 735, 139559, https://doi.org/10.1016/j.scitotenv.2020.139559.
Dubovik, O., B. Holben, T. F. Eck, A. Smirnov, Y. J. Kaufman, M. D. King, D. Tanré, and I. Slutsker, 2002: Variability of absorption and optical properties of key aerosol types observed in worldwide locations. J. Atmos. Sci., 59(3), 590−608, https://doi.org/10.1175/1520-0469(2002)059<0590:VOAAOP>2.0.CO;2.
Feng, Z. Z., E. Z. Hu, X. K. Wang, L. J. Liang, and X. J. Liu, 2015: Ground-level O3 pollution and its impacts on food crops in China: A review. Environmental Pollution, 199, 42−48, https://doi.org/10.1016/j.envpol.2015.01.016.
Gao, J. H., B. Zhu, H. Xiao, H. Q. Kang, C. Pan, D. D. Wang, and H. L. Wang, 2018: Effects of black carbon and boundary layer interaction on surface ozone in Nanjing, China. Atmospheric Chemistry and Physics, 18(10), 7081−7094, https://doi.org/10.5194/acp-18-7081-2018.
Gong, X., C. Zhang, H. Chen, S. A. Nizkorodov, J. Chen, and X. Yang, 2015: Size distribution and mixing state of black carbon particles during a heavy air pollution episode in Shanghai. Atmospheric Chemistry and Physics Discussions, 15(24), 35 383−35 415, https://doi.org/10.5194/acpd-15-35383-2015.
Goodman, J. E., R. L. Prueitt, S. N. Sax, D. M. Pizzurro, H. N. Lynch, K. Zu, and F. J. Venditti, 2015: Ozone exposure and systemic biomarkers: Evaluation of evidence for adverse cardiovascular health impacts. Critical Reviews in Toxicology, 45(5), 412−452, https://doi.org/10.3109/10408444.2015.1031371.
Hansen, A. D. A., H. Rosen, and T. Novakov, 1984: The aethalometer—An instrument for the real-time measurement of optical absorption by aerosol particles. Science of the Total Environment, 36, 191−196, https://doi.org/10.1016/0048-9697(84)90265-1.
Hess, M., P. Koepke, and I. Schult, 1998: Optical properties of aerosols and clouds: The software package OPAC. Bull. Amer. Meteor. Soc., 79(5), 831−844, https://doi.org/10.1175/1520-0477(1998)079<0831:OPOAAC>2.0.CO;2.
Huang, G., W. Liu, Z. H. Liu, and Y. Zhang, 2015: A research overview of Black Carbon Aerosols. Journal of Catastrophology, 30(2), 205−214, https://doi.org/10.3969/j.issn.1000-811X.2015.02.039. (in Chinese with English abstract
Huang, X. F., T. L. Sun, L. W. Zeng, G. H. Yu, and S. J. Luan, 2012: Black carbon aerosol characterization in a coastal city in South China using a single particle soot photometer. Atmos. Environ., 51, 21−28, https://doi.org/10.1016/j.atmosenv.2012.01.056.
Jacobson, M. Z., 1998: Studying the effects of aerosols on vertical photolysis rate coefficient and temperature profiles over an urban airshed. J. Geophys. Res., 103(D9), 10 593−10 604, https://doi.org/10.1029/98JD00287.
Jacobson, M. Z., 2001: Strong radiative heating due to the mixing state of black carbon in atmospheric aerosols. Nature, 409, 695−697, https://doi.org/10.1038/35055518.
Kondo, Y., and Coauthors, 2006: Temporal variations of elemental carbon in Tokyo. J. Geophys. Res., 111, D12205, https://doi.org/10.1029/2005JD006257.
Li, G. H., R. Y. Zhang, J. W. Fan, and X. X. Tie, 2005: Impacts of black carbon aerosol on photolysis and ozone. J. Geophys. Res., 110, D23206, https://doi.org/10.1029/2005JD005898.
Li, K., D. J. Jacob, H. Liao, L. Shen, Q. Zhang, and K. H. Bates, 2019: Anthropogenic drivers of 2013−2017 trends in summer surface ozone in China. Proceedings of the National Academy of Sciences of the United States of America, 116(2), 422−427, https://doi.org/10.1073/pnas.1812168116.
Lingaswamy, A. P., S. M. Arafath, G. Balakrishnaiah, K. R. Gopal, N. S. K. Reddy, K. R. O. Reddy, R. R. Reddy, and T. C. Rao, 2017: Observations of trace gases, photolysis rate coefficients and model simulations over semi-arid region, India. Atmos. Environ., 158, 246−258, https://doi.org/10.1016/j.atmosenv.2017.03.048.
Liu, S., and Coauthors, 2015: Enhanced light absorption by mixed source black and brown carbon particles in UK winter. Nature Communications, 6(1), 8435, https://doi.org/10.1038/ncomms9435.
Ma, N., and Coauthors, 2011: Aerosol optical properties in the North China Plain during HaChi campaign: an in-situ optical closure study. Atmospheric Chemistry and Physics, 11(12), 5959−5973, https://doi.org/10.5194/acp-11-5959-2011.
Madronich, S., and J. G. Calvert, 1990: Permutation reactions of organic peroxy radicals in the troposphere. J. Geophys. Res., 95(D5), 5697−5715, https://doi.org/10.1029/JD095iD05p05697.
Madronich, S., and S. Flocke, 1999: The role of solar radiation in atmospheric chemistry. Environmental Photochemistry, P. Boule, Ed., Springer, 1−26, https://doi.org/10.1007/978-3-540-69044-3_1.
McMeeking, G. R., and Coauthors, 2010: Black carbon measurements in the boundary layer over western and northern Europe. Atmospheric Chemistry and Physics, 10, 9393−9414, https://doi.org/10.5194/acp-10-9393-2010.
Oshima, N., M. Koike, Y. Zhang, Y. Kondo, N. Moteki, N. Takegawa, and Y. Miyazaki, 2009: Aging of black carbon in outflow from anthropogenic sources using a mixing state resolved model: Model development and evaluation. J. Geophys. Res., 114, D06210, https://doi.org/10.1029/2008JD010680.
Palancar, G. G., B. L. Lefer, S. R. Hall, W. J. Shaw, C. A. Corr, S. C. Herndon, J. R. Slusser, and S. Madronich, 2013: Effect of aerosols and NO2 concentration on ultraviolet actinic flux near Mexico City during MILAGRO: measurements and model calculations. Atmospheric Chemistry and Physics, 13(2), 1011−1022, https://doi.org/10.5194/acp-13-1011-2013,2013.
Park, S. S., and K. H. Lee, 2015: Characterization and sources of black carbon in PM2.5 at a site close to a roadway in Gwangju, Korea, during winter. Environmental Science: Processes & Impacts, 17(10), 1794−1805, https://doi.org/10.1039/C5EM00225G.
Pitz, M., J. Cyrys, E. Karg, A. Wiedensohler, H. E. Wichmann, and J. Heinrich, 2003: Variability of apparent particle density of an urban aerosol. Environmental Science & Technology, 37(19), 4336−4342, https://doi.org/10.1021/es034322p.
Ramanathan, V., and G. Carmichael, 2008: Global and regional climate changes due to black carbon. Nature Geoscience, 1(4), 221−227, https://doi.org/10.1038/ngeo156.
Ryu, Y. H., A. Hodzic, J. Barre, G. Descombes, and P. Minnis, 2018: Quantifying errors in surface ozone predictions associated with clouds over the CONUS: a WRF-Chem modeling study using satellite cloud retrievals. Atmospheric Chemistry and Physics, 18(10), 7509−7525, https://doi.org/10.5194/acp-18-7509-2018.
Saathoff, H., and Coauthors, 2003: Coating of soot and (NH4)2SO4 particles by ozonolysis products of α-pinene. Journal of Aerosol Science, 34(10), 1297−1321, https://doi.org/10.1016/S0021-8502(03)00364-1.
Shao, P., J. L. An, J. Y. Xin, F. K. Wu, J. X. Wang, D. S. Ji, and Y. S. Wang, 2016: Source apportionment of VOCs and the contribution to photochemical ozone formation during summer in the typical industrial area in the Yangtze River Delta, China. Atmospheric Research, l76−177, 64−74, https://doi.org/10.1016/j.atmosres.2016.02.015.
Sheng, P. X., J. T. Mao, J. G. Li, Z. M. Ge, A. C. Zhang, J. G. Sang, N. X. Pan, and H. S. Zhang, 2013: Atmospheric Physics. 2nd ed., Peking University Press, 551 pp. (in Chinese)
Sillman, S., 1995: The use of NOy, H2O2, and HNO3 as indicators for ozone-NOx-hydrocarbon sensitivity in urban locations. J. Geophys. Res., 100(D7), 14 175−14 188, https://doi.org/10.1029/94JD02953.
Stamnes, K., S. C. Tsay, W. Wiscombe, and K. Jayaweera, 1988: Numerically stable algorithm for discrete-ordinate-method radiative transfer in multiple scattering and emitting layered media. Applied Optics, 27(12), 2502−2509, https://doi.org/10.1364/AO.27.002502.
Tan, Y., and Coauthors, 2020: Annual variations of black carbon over the Yangtze River Delta from 2015 to 2018. Journal of Environmental Sciences, 96, 72−84, https://doi.org/10.1016/j.jes.2020.04.019.
Wang, Q. Y., and Coauthors, 2014: Black carbon aerosol characterization in a remote area of Qinghai-Tibetan Plateau, western China. Science of the Total Environment, 479−480, 151−158, https://doi.org/10.1016/j.scitotenv.2014.01.098.
Yang, X., C. F. Zhao, J. P. Guo, and Y. Wang, 2016: Intensification of aerosol pollution associated with its feedback with surface solar radiation and winds in Beijing. J. Geophys. Res., 121(8), 4093−4099, https://doi.org/10.1002/2015JD024645.
Zhang, M., Z. L. Cui, S. Q. Han, M. Song, Y. Li, C. S. Zhao, and X. Q. Lu, 2015: Sensitivity analysis of summer ozone by NCAR MM in Tianjin. Journal of Meteorology and Environment, 31(5), 71−78, https://doi.org/10.3969/j.issn.1673-503X.2015.05.010. (in Chinese with English abstract
Zhang, Q., and Coauthors, 2019a: Drivers of improved PM2.5 air quality in China from 2013 to 2017. Proceedings of the National Academy of Sciences of the United States of America, 116(49), 24 463−24 469, https://doi.org/10.1073/pnas.1907956116.
Zhang, R. Y., A. F. Khalizov, J. Pagels, D. Zhang, H. X. Xue, and P. H. McMurry, 2008: Variability in morphology, hygroscopicity, and optical properties of soot aerosols during atmospheric processing. Proceedings of the National Academy of Sciences of the United States of America, 105, 10 291−10 296, https://doi.org/10.1073/pnas.0804860105.
Zhang, Y., Y. N. Li, J. P. Guo, Y. Wang, D. D. Chen, and H. B. Chen, 2019b: The climatology and trend of black carbon in China from 12-year ground observations. Climate Dyn., 53(9−10), 5881−5892, https://doi.org/10.1007/s00382-019-04903-0.
Zhang, Z. F., Y. Shen, Y. W. Li, B. Zhu, and X. N. Yu, 2017: Analysis of extinction properties as a function of relative humidity using a κ-EC-Mie model in Nanjing. Atmospheric Chemistry and Physics, 17, 4147−4157, https://doi.org/10.5194/acp-17-4147-2017.