Adler, R. F., G. J. Huffman, A. Chang, R. Ferraro, P. Xie, J. Janowiak, B. Rudolf, U. Schneider, S. Curtis, D. Bolvin, A. Gruber, J. Susskind, and P. Arkin, 2003: The Version 2 Global Precipitation Climatology Project (GPCP) Monthly Precipitation Analysis (1979-Present). J. Hydrometeor., 4, 1147−1167, https://doi.org/10.1175/1525-7541(2003)004<1147:TVGPCP>2.0.CO;2.
Alessandri, A., S. Gualdi, J. Polcher, and A. Navarra, 2007: Effects of land surface-vegetation on the boreal summer surface climate of a GCM. J. Clim., 20(2), 255−278, https://doi.org/10.1175/JCLI3983.1.
Alexander, M. A., I. Bladé, M. Newman, J. R. Lanzante, N. C. Lau, and J. D. Scott, 2002: The atmospheric bridge: The influence of ENSO teleconnections on air-sea interaction over the global ocean. J. Clim., 15(16), 2205−2231, https://doi.org/10.1175/1520-0442(2002)015<2205:TABTIO>2.0.CO;2.
Chang, C. P., Y. S. Zhang, and T. Li, 2000a: Interannual and inter-decadal variations of the East Asian summer monsoon and tropical Pacific SSTs. Part I: Roles of the subtropical ridge. J. Clim., 13, 4310−4325, https://doi.org/10.1175/1520-0442(2000)013<4310:IAIVOT>2.0.CO;2.
Chang, C. P., Y. S. Zhang, and T. Li, 2000b: Interannual and Interdecadal Variations of the East Asian Summer Monsoon and Tropical Pacific SSTs. Part II: Meridional Structure of the Monsoon. J. Clim., 13, 4326−4340, https://doi.org/10.1175/1520-0442(2000)013<4326:IAIVOT>2.0.CO;2.
Chen, G., and R. Huang, 2012: Excitation mechanisms of the teleconnection patterns affecting the July precipitation in northwest China. J. Clim., 25, 7834−7851, https://doi.org/10.1175/JCLI-D-11-00684.1.
Chen, G., R. Huang, and L. Zhou, 2013: Baroclinic instability of the Silk Road pattern induced by thermal damping. J. Atmos. Sci., 70, 2875−2893, https://doi.org/10.1175/JAS-D-12-0326.1.
Chen, X. L., and T. J. Zhou, 2014: Relative role of tropical SST forcing in the 1990s periodicity change of the Pacific-Japan pattern interannual variability. J. Geophys. Res. Atmos., 119(13), 043−13, 066.
Chen, Y., and P. M. Zhai, 2016: Mechanisms for concurrent low-latitude circulation anomalies responsible for persistent extreme precipitation in the Yangtze River Valley. Clim. Dyn., 47, 989−1006, https://doi.org/10.1007/s00382-015-2885-6.
Chen, Z. S., Z. P. Wen, R. G. Wu, X. B. Lin, and J. B. Wang, 2016: Relative importance of tropical SST anomalies in maintaining the western North Pacific anomalous anticyclone during El Niño to La Niña transition years. Clim. Dyn., 46, 1027−1041, https://doi.org/10.1007/s00382-015-2630-1.
Chiang, J. C. H., and D. J. Vimont, 2004: Analogous Pacific and Atlantic meridional modes of tropical atmosphere-ocean variability. J. Clim., 17, 4143−4158, https://doi.org/10.1175/JCLI4953.1.
Ding, Q., and B. Wang, 2005: Circumglobal teleconnection in the Northern Hemisphere summer. J. Clim., 18(17), 3483−3505, https://doi.org/10.1175/JCLI3473.1.
Ding, Q. H., J. M. Wallace, and G. Branstator, 2011: Tropical-extratropical teleconnections in boreal summer: Observed interannual variability. J. Clim., 24, 1878−1896, https://doi.org/10.1175/2011JCLI3621.1.
Enomoto, T., 2004: Interannual variability of the Bonin high associated with the propagation of Rossby waves along the Asian jet. J. Meteor. Soc. Jpn., 82, 1019−1034, https://doi.org/10.2151/jmsj.2004.1019.
Enomoto, T., B. J. Hoskins, and Y. Matsuda, 2003: The formation mechanism of the Bonin high in August. Quart. J. Roy. Meteor. Soc., 129, 157−178, https://doi.org/10.1256/qj.01.211.
Fan, H., B. Huang, S. Yang, and W. Dong, 2020: Influence of Pacific Meridional Mode on ENSO evolution and predictability: Asymmetric modulation and ocean preconditioning. J. Clim., 34(5), 1881−1901.
Gill, A. E., 1980: Some simple solutions for heat-induced tropical circulation. Q. J. R. Meteorol. Soc, 106, 447−462, https://doi.org/10.1002/qj.49710644905.
Han, T. T., S. P. He, X. Hao, and H. J. Wang, 2018: Recent interdecadal shift in the relationship between Northeast China’s winter precipitation and the North Atlantic and Indian Oceans. Clim. Dyn., 50(3−4), 1413−1424, https://doi.org/10.1007/s00382-017-3694-x.
He, S. P., Y. Q. Gao, F. Li, H. J. Wang, and Y. C. He, 2017: Impact of Arctic Oscillation on the East Asian climate: A review. Earth-Sci. Rev., 164, 48−62, https://doi.org/10.1016/j.earscirev.2016.10.014.
Hersbach, H., B. Bell, P. Berrisford, A. Horányi, J. M. Sabater, J. Nicolas, R. Radu, D. Schepers, A. Simmons, C. Soci, and D. Dee, 2019: Global reanalysis: goodbye ERA-Interim, hello ERA5. ECMWF Newsletter, 159, 17−24.
Hong, X. W., R. Y. Lu, and S. L. Li, 2018: Differences in the Silk Road pattern and its relationship to the North Atlantic Oscillation between early and late summers. J. Clim., 31, 9283−9292, https://doi.org/10.1175/JCLI-D-18-0283.1.
Huang, B., P. W. Thorne, V. F. Banzon, T. Boyer, G. Chepurin, J. H. Lawrimore, M. J. Menne, T. M. Smith, R. S. Vose, and H. M. Zhang, 2017: Extended Reconstructed Sea Surface Temperature version 5 (ERSSTv5), Upgrades, validations, and inter-scomparisons. J. Clim., 30(20), 8179−8205, https://doi.org/10.1175/JCLI-D-16-0836.1.
Huang, R. H., and W. J. Li, 1988: Influence and physical mechanism of heat source anomaly over the tropical western Pacific on the subtropical high over East Asia (in Chinese). Chin. J. Atmos. Sci., 12, 107−116.
Hsu P. C., T. Li, L. You, J. Gao, and H. L. Ren, 2015: A spatial-temporal projection method for 10–30-day forecast of heavy rainfall in Southern China. Clim. Dyn., 44, 1227−1244, https://doi.org/10.1007/s00382-014-2215-4.
Jiang, L., and T. Li, 2019: Relative roles of El Niño-induced extratropical and tropical forcing in generating Tropical North Atlantic (TNA) SST anomaly. Clim. Dyn., 53(7-8), 3791−3804, https://doi.org/10.1007/s00382-019-04748-7.
Johnson, N. C., and Y. Kosaka, 2016: The impact of eastern equatorial Pacific convection on the diversity of boreal winter El Niño teleconnection patterns. Clim. Dyn., 47, 3737−3765, https://doi.org/10.1007/s00382-016-3039-1.
Kosaka, Y., and H. Nakamura, 2006: Structure and dynamics of the summertime Pacific-Japan teleconnection pattern. Q. J. R. Meteorol. Soc., 132, 2009−2030, https://doi.org/10.1256/qj.05.204.
Kosaka, Y., H. Nakamura, M. Watanabe, and M. Kimoto, 2009: Analysis on the dynamics of a wave-like teleconnection pattern along the summertime Asian jet based on a reanalysis dataset and climate model simulations. J. Meteor. Soc. Jpn., 87, 561−580, https://doi.org/10.2151/jmsj.87.561.
Li, T., and B. Wang, 2005: A review on the western North Pacific monsoon: synoptic-to-interannual variabilities. Terr. Atmos. Ocean Sci., 16, 285−314, https://doi.org/10.3319/TAO.2005.16.2.285(A).
Li, T., B. Wang, B. Wu, T. J. Zhou, C. P. Chang, and R. H. Zhang, 2017: Theories on formation of an anomalous anticyclone in Western North Pacific during El Niño: a review. J. Meteorol. Res., 31(6), 987−1006, https://doi.org/10.1007/s13351-017-7147-6.
Lin, J. S., B. Wu, and T. J. Zhou, 2016: Is the interdecadal circumglobal teleconnection pattern excited by the Atlantic multidecadal Oscillation? Atmos. Oceanic Sci. Lett., 9(6), 451−457, https://doi.org/10.1080/16742834.2016.1233800.
Liu, Y. Y., and Y. H. Ding, 2008: Teleconnection between the Indian summer monsoon onset and the Meiyu over the Yangtze River Valley. Sci. China Ser. D-Earth Sci., 51, 1021−1035, https://doi.org/10.1007/s11430-008-0073-9.
Lu, R. Y., J. H. Oh, and B. J. Kim, 2002: A teleconnection pattern in upper-level meridional wind over the North African and Eurasian continent in summer. Tellus, 54A, 44−55.
Lu, R., Z. W. Zhu, T. Li, and H. Y. Zhang, 2020: Interannual and interdecadal variabilities of spring rainfall over northeast China and their associated sea surface temperature anomaly forcings. J. Clim., 33(4), 1423−1435, https://doi.org/10.1175/JCLI-D-19-0302.1.
Nan, S. L., and J. P. Li., 2005: The relationship between the summer precipitation in the Yangtze River Valley and the boreal spring Southern Hemisphere annular mode. Geophys. Res. Lett., 30, 4-1−4-4.
Neelin, J. D., and I. M. Held, 1987: Modeling tropical convergence based on the moist static energy budget. Mon. Wea. Rev., 115, 3−12, https://doi.org/10.1175/1520-0493(1987)115<0003:MTCBOT>2.0.CO;2.
Nitta, T., 1987: Convective activities in the tropical western Pacific and their impact on the northern hemisphere summer circulation. J. Meteorol. Soc. Jpn., 65, 373−390, https://doi.org/10.2151/jmsj1965.65.3_373.
Piao, J., W. Chen, S. F. Chen, H. N. Gong, and B. Liu, 2020: The intensified impact of El Niño on late-summer precipitation over East Asia since the early 1990s. Clim. Dyn., 54, 4793−4809, https://doi.org/10.1007/s00382-020-05254-x.
Roeckner, E., E. Arpe, L. Bengtsson, M. Christoph, M. Claussen, L. Dümenil, M. Esch, M. Giorgetta, U. Schlese, and U. Schulzweida, 1996: The atmospheric general circulation model ECHAM4: Model description and simulation of present-day climate. Max-Planck-Institut für Meteorologie Report Series 218. Technical Report, Max-Planck-Institut für Meteorologie, 99pp.
Sato, N., and M. Takahashi, 2006: Dynamical processes related to the appearance of quasi-stationary waves on the subtropical jet in the midsummer Northern Hemisphere. J. Clim., 19, 1531−1544, https://doi.org/10.1175/JCLI3697.1.
Sun, J. Q., and H. J. Wang, 2012: Changes of the connection between the summer North Atlantic Oscillation and the East Asian summer rainfall. J. Geophys. Res. Atmos., 117(D8).
Wallace, J. M., and D. S. Gutzler, 1981: Teleconnections in the geopotential height fields during the Northern Hemisphere winter. Mon. Weather Rev., 109(4), 784−812, https://doi.org/10.1175/1520-0493(1981)109<0784:TITGHF>2.0.CO;2.
Wang, B., and Q. Zhang, 2002: Pacific-East Asian Teleconnection. Part II: How the Philippine sea anomalous anticyclone is established during El Niño development. J. Clim., 15(22), 3252−3265, https://doi.org/10.1175/1520-0442(2002)015<3252:PEATPI>2.0.CO;2.
Wang, B., B. Q. Xiang, and J. Y. Lee, 2013: Subtropical high predictability establishes a promising way for monsoon and tropical storm predictions. Proc. Natl. Acad. Sci. USA, 110, 2718−2722, https://doi.org/10.1073/pnas.1214626110.
Wang, B., J. Li, and Q. He, 2017a: Variable and robust East Asian monsoon rainfall response to El Niño over the past 60 years (1957–2016). Adv. Atmos. Sci., 34(10), 1235−1248, https://doi.org/10.1007/s00376-017-7016-3.
Wang, B., J. Liu, J. Yang, T. Zhou, and Z. Wu, 2009: Distinct principal modes of early and late summer rainfall anomalies in East Asia. J. Clim., 22, 3864−3875, https://doi.org/10.1175/2009JCLI2850.1.
Wang, B., R. G. Wu, and T. Li, 2003: Atmosphere-warm ocean interaction and its impacts on Asian-Australian monsoon variation. J. Clim., 16, 1195−1211, https://doi.org/10.1175/1520-0442(2003)16<1195:AOIAII>2.0.CO;2.
Wang, B., R. Wu, and X. Fu, 2000: Pacific-East Asian Teleconnection: How does ENSO affect East Asian climate? J. Clim., 13(9), 1517−1536, https://doi.org/10.1175/1520-0442(2000)013<1517:PEATHD>2.0.CO;2.
Wang, B., X. Luo, Y. M. Yang, W. Y. Sun, M. A. Cane, W. J. Cai, S. W. Yeh, and J. Liu, 2019: Historical change of El Niño properties sheds light on future changes of extreme El Niño. Proceedings of the National Academy of Sciences, 116(45), 22512−22517, https://doi.org/10.1073/pnas.1911130116.
Wang, L., T. Li, E. Maloney, and B. Wang, 2017b: Fundamental causes of propagating and non-propagating MJOs in MJOTF/GASS models. J. Clim., 30(10), 3743−3769, https://doi.org/10.1175/JCLI-D-16-0765.1.
Wang, X., 2018: The influence of SST in subtropical North Pacific on the warm-cold phase transition of ENSO. Climatic Environ. Res. (in Chinese), 23(4), 453−462.
Wei, W., R. Zhang, S. Yang, W. Li, and M. Wen, 2019: Quasi-biweekly oscillation of the South Asian High and its role in connecting the Indian and East Asian summer rainfalls. Geophys. Res. Lett., 46(24), 14742−14750, https://doi.org/10.1029/2019GL086180.
Wu, B., J. Lin, and T. Zhou, 2016: Interdecadal circumglobal teleconnection pattern during boreal summer. Atmos. Sci. Lett., 17(8), 446−452, https://doi.org/10.1002/asl.677.
Wu, B., T. Li, and T. Zhou, 2010: Relative Contributions of the Indian Ocean and local SST anomalies to the maintenance of the western North Pacific anomalous anticyclone during the El Niño decaying summer. J. Clim., 23(11), 2974−2986, https://doi.org/10.1175/2010JCLI3300.1.
Wu, R., 2002: A mid-latitude Asian circulation anomaly pattern in boreal summer and its connection with the Indian and East Asian summer monsoons. Int. J. Climatol., 22, 1879−1895, https://doi.org/10.1002/joc.845.
Xie, P., and P. A. Arkin, 1997: Global precipitation: A 17-year monthly analysis based on gauge observations, satellite estimates, and numerical model outputs. Bull. Amer. Meteor. Soc., 78, 2539−2558, https://doi.org/10.1175/1520-0477(1997)078<2539:GPAYMA>2.0.CO;2.
Xie, S. P., K. Hu, J. Hafner, H. Tokinaga, Y. Du, G. Huang, and T. Sampe, 2009: Indian Ocean capacitor effect on Indo-western Pacific climate during the summer following El Niño. J. Clim., 22(3), 730−747, https://doi.org/10.1175/2008JCLI2544.1.
Xing, W., B. Wang, and S. Y. Yim, 2016: Peak-summer East Asian rainfall predictability and prediction part I: Southeast Asia. Clim. Dyn., 47, 1–13, https://doi.org/10.1007/s00382-014-2385-0.
Xing, W., B. Wang, S. Y. Yim, and K. J. Ha, 2017: Predictable patterns of the May–June rainfall anomaly over East Asia. J. Geophys. Res. Atmos, 122, 2203−2217, https://doi.org/10.1002/2016JD025856.
Xu, Z. Q., K. Fan, and H. J. Wang, 2015: Decadal Variation of Summer Precipitation over China and Associated Atmospheric Circulation after the Late 1990s. J. Clim., 28, 4086−4106, https://doi.org/10.1175/JCLI-D-14-00464.1.
Yang, S. Y., and T. Li, 2016: Zonal shift of the South Asian High on the subseasonal time-scale and its relation to the summer rainfall anomaly in China. Q. J. R. Meteorol. Soc., 142, 2324−2335, https://doi.org/10.1002/qj.2826.
Yasui, S., and M. Watanabe, 2010: Forcing processes of the summertime circumglobal teleconnection pattern in a dry AGCM. J. Clim., 23, 2093−2114, https://doi.org/10.1175/2009JCLI3323.1.
Yuan, Y., and S. Yang, 2012: Impacts of different types of El Niño on the East Asian climate: Focus on ENSO cycles. J. Clim., 25, 7702−7722, https://doi.org/10.1175/JCLI-D-11-00576.1.
Zhang, R. H., Q. Y. Min, and J. Z. Su, 2017: Impact of El Niño on atmospheric circulations over East Asia and rainfall in China: Role of the anomalous western North Pacific anticyclone. Sci. China Earth Sci., 60, 1124−1132, https://doi.org/10.1007/s11430-016-9026-x.
Zhu, Z. W., 2018: Breakdown of the relationship between Australian summer rainfall and ENSO caused by tropical Indian Ocean SST warming. J. Clim., 31(6), 2321−2336, https://doi.org/10.1175/JCLI-D-17-0132.1.
Zhu, Z. W., and T. Li, 2016: A new paradigm for continental U.S. summer rainfall variability: Asia–North America teleconnection. J. Clim., 29(20), 7313−7327, https://doi.org/10.1175/JCLI-D-16-0137.1.
Zhu, Z. W., and T. Li, 2017: The record-breaking hot summer in 2015 over Hawaiian Islands and its physical causes. J. Clim., 30(11), 4253−4266, https://doi.org/10.1175/JCLI-D-16-0438.1.
Zhu, Z. W., T. Li, and J. H. He, 2014: Out-of-phase relationship between boreal spring and summer decadal rainfall changes in southern China. J. Clim., 27(3), 1083−1099, https://doi.org/10.1175/JCLI-D-13-00180.1.
Zhu, Z. W., T. Li, P. C. Hsu, and J. H. He, 2015: A spatial-temporal projection model for extended-range forecast in the tropics. Clim. Dyn., 45, 1085−1098, https://doi.org/10.1007/s00382-014-2353-8.
Zhu, Z. W., R. Lu, H. Yan, W. Li, T. Li, and J. H. He, 2020: The dynamic origin of the interannual variability of West China Autumn Rainfall. J. Clim., 33(22), 9643−9652, https://doi.org/10.1175/JCLI-D-20-0097.1.