Alexander, M. A., and J. D. Scott, 2008: The role of Ekman ocean heat transport in the Northern Hemisphere response to ENSO. J. Climate, 21, 5688−5707, https://doi.org/10.1175/2008JCLI2382.1.
Ambaum, M. H. P., and B. J. Hoskins, 2002: The NAO troposphere-stratosphere connection. J. Climate, 15, 1969−1978, https://doi.org/10.1175/1520-0442(2002)015<1969:TNTSC>2.0.CO;2.
Andrews, D. G., J. R. Holton, and C. B Leovy, 1987: Middle Atmosphere Dynamics. Vol. 40, Academic Press Inc..
Baldwin, M. P., and T. J. Dunkerton, 2001: Stratospheric harbingers of anomalous weather regimes. Science, 294, 581−584, https://doi.org/10.1126/science.1063315.
Baldwin, M. P., D. B. Stephenson, D. W. J. Thompson, T. J. Dunkerton, A. J. Charlton, and A. O’Neill, 2003: Stratospheric memory and skill of extended-range weather forecasts. Science, 301, 636−640, https://doi.org/10.1126/science.1087143.
Bond, N. A., J. E. Overland, M. Spillane, and P. Stabeno, 2003: Recent shifts in the state of the North Pacific. Geophys. Res. Lett., 30, 2183, https://doi.org/10.1029/2003GL018597.
Broccoli, A. J., T. L. Delworth, and N. C. Lau, 2001: The effect of changes in observational coverage on the association between surface temperature and the Arctic oscillation. J. Climate, 14, 2481−2485, https://doi.org/10.1175/1520-0442(2001)014<2481:TEOCIO>2.0.CO;2.
Cohen, J., and M. Barlow, 2005: The NAO, the AO, and global warming: How closely related? J. Climate, 18, 4498−4513, https://doi.org/10.1175/JCLI3530.1.
Ding, R. Q., J. P. Li, Y. H. Tseng, C. Sun, and Y. P. Guo, 2015: The Victoria mode in the North Pacific linking extratropical sea level pressure variations to ENSO. J. Geophys. Res.: Atmos., 120, 27−45, https://doi.org/10.1002/2014JD022221.
Domeisen, D. I. V., C. I. Garfinkel, and A. H. Butler, 2019: The teleconnection of El Niño Southern Oscillation to the stratosphere. Rev. Geophys., 57, 5−47, https://doi.org/10.1029/2018RG000596.
Domeisen, D. I. V., A. H. Butler, K. Fröhlich, M. Bittner, W. A. Müller, and J. Baehr, 2015: Seasonal predictability over Europe arising from El Niño and stratospheric variability in the MPI-ESM Seasonal Prediction System. J. Climate, 28, 256−271, https://doi.org/10.1175/JCLI-D-14-00207.1.
Free, M., and D. J. Seidel, 2009: Observed El Niño-Southern Oscillation temperature signal in the stratosphere. J. Geophys. Res.: Atmos., 114, D23108, https://doi.org/10.1029/2009JD012420.
Garfinkel, C. I., and D. L. Hartmann, 2007: Effects of the El Niño-Southern Oscillation and the Quasi-Biennial Oscillation on polar temperatures in the stratosphere. J. Geophys. Res.: Atmos., 112, D19112, https://doi.org/10.1029/2007JD008481.
Garfinkel, C. I., and D. L. Hartmann, 2008: Different ENSO teleconnections and their effects on the stratospheric polar vortex. J. Geophys. Res.: Atmos., 113, D18114, https://doi.org/10.1029/2008JD009920.
Garfinkel, C. I., D. L. Hartmann, and F. Sassi, 2010: Tropospheric precursors of anomalous Northern Hemisphere stratospheric polar vortices. J. Climate, 23, 3282−3299, https://doi.org/10.1175/2010JCLI3010.1.
Garfinkel, C. I., M. M. Hurwitz, and L. D. Oman, 2015: Effect of recent sea surface temperature trends on the Arctic stratospheric vortex. J. Geophys. Res.: Atmos., 120, 5404−5416, https://doi.org/10.1002/2015JD023284.
Garfinkel, C. I., S.-W. Son, K. Song, V. Aquila, and L. D. Oman, 2017: Stratospheric variability contributed to and sustained the recent hiatus in Eurasian winter warming. Geophys. Res. Lett., 44, 374−382, https://doi.org/10.1002/2016GL072035.
Garfinkel, C. I., I. Weinberger, L. D. Oman, V. Aquila, I. P. White, and Y.-K. Lim, 2018: The salience of nonlinearities in the boreal winter response to ENSO. 20th EGU General Assembly Conference Abstracts, Vienna, Austria.
Haynes, P. H., M. E. McIntyre, T. G. Shepherd, C. J. Marks, and K. P. Shine, 1991: On the “downward control” of extratropical diabatic circulations by eddy-induced mean zonal forces. J. Atmos. Sci., 48, 651−678, https://doi.org/10.1175/1520-0469(1991)048<0651:OTCOED>2.0.CO;2.
Hegyi, B. M., Y. Deng, R. X. Black, and R. J. Zhou, 2014: Initial transient response of the winter polar stratospheric vortex to idealized equatorial Pacific sea surface temperature anomalies in the NCAR WACCM. J. Climate, 27, 2699−2713, https://doi.org/10.1175/JCLI-D-13-00289.1.
Hoskins, B. J., M. E. McIntyre, and A. W. Robertson, 1985: On the use and significance of isentropic potential vorticity maps. Quart. J. Roy. Meteor. Soc., 111, 877−946, https://doi.org/10.1002/qj.49711147002.
Hu, D. Z., and Z. Y. Guan, 2018: Decadal relationship between the stratospheric Arctic vortex and Pacific Decadal Oscillation. J. Climate, 31, 3371−3386, https://doi.org/10.1175/JCLI-D-17-0266.1.
Hu, D. Z., Y. P. Guo, Z. M. Tan, and Z. Y. Guan, 2019: Interannual relationship between the boreal spring Arctic oscillation and the Northern Hemisphere Hadley circulation extent. J. Climate, 32, 4395−4408, https://doi.org/10.1175/JCLI-D-18-0657.1.
Hu, J. G., T. M. Li, and H. M. Xu, 2018: Relationship between the North Pacific Gyre Oscillation and the onset of stratospheric final warming in the Northern Hemisphere. Climate Dyn., 51, 3061−3075, https://doi.org/10.1007/s00382-017-4065-3.
Hu, J. G., T. Li, H. M. Xu, and S. Y. Yang, 2017: Lessened response of boreal winter stratospheric polar vortex to El Niño in recent decades. Climate Dyn., 49, 263−278, https://doi.org/10.1007/s00382-016-3340-z.
Huang, J. L., W. S. Tian, J. K. Zhang, Q. Huang, H. Y. Tian, and J. L. Luo, 2017: The connection between extreme stratospheric polar vortex events and tropospheric blockings. Quart. J. Roy. Meteor. Soc., 143, 1148−1164, https://doi.org/10.1002/qj.3001.
Hurwitz, M. M., P. A. Newman, and C. I. Garfinkel, 2012: On the influence of North Pacific sea surface temperature on the Arctic winter climate. J. Geophys. Res.: Atmos., 117, D19110, https://doi.org/10.1029/2012JD017819.
Iza, M., and N. Calvo, 2015: Role of stratospheric sudden warmings on the response to Central Pacific El Niño. Geophys. Res. Lett., 42, 2482−2489, https://doi.org/10.1002/2014GL062935.
Iza, M., N. Calvo, and E. Manzini, 2016: The stratospheric pathway of La Niña. J. Climate, 29, 8899−8914, https://doi.org/10.1175/JCLI-D-16-0230.1.
Jadin, E. A., K. Wei, Y. A. Zyulyaeva, W. Chen, and L. Wang, 2010: Stratospheric wave activity and the Pacific Decadal Oscillation. Journal of Atmospheric and Solar-Terrestrial Physics, 72, 1163−1170, https://doi.org/10.1016/j.jastp.2010.07.009.
Kalnay, E., and Coauthors, 1996: The NCEP/NCAR 40-year reanalysis project. Bull. Amer. Meteor. Soc., 77, 437−472, https://doi.org/10.1175/1520-0477(1996)077<0437:TNYRP>2.0.CO;2.
Kang, W. Y., and E. Tziperman, 2017: More frequent sudden stratospheric warming events due to enhanced MJO forcing expected in a warmer climate. J. Climate, 30, 8727−8743, https://doi.org/10.1175/JCLI-D-17-0044.1.
Kolstad, E. W., T. Breiteig, and A. A. Scaife, 2010: The association between stratospheric weak polar vortex events and cold air outbreaks in the Northern Hemisphere. Quart. J. Roy. Meteor. Soc., 136, 886−893, https://doi.org/10.1002/qj.620.
Kren, A. C., D. R. Marsh, A. K. Smith, and P. Pilewskie, 2016: Wintertime Northern Hemisphere response in the stratosphere to the Pacific Decadal Oscillation using the Whole Atmosphere Community Climate Model. J. Climate, 29, 1031−1049, https://doi.org/10.1175/JCLI-D-15-0176.1.
Li, Y. P., and W. S. Tian, 2017: Different impact of central Pacific and eastern Pacific El Niño on the duration of sudden stratospheric warming. Adv. Atmos. Sci., 34, 771−782, https://doi.org/10.1007/s00376-017-6286-0.
Li, Y. P., W. S. Tian, F. Xie, Z. P. Wen, J. K. Zhang, D. Z. Hu, and Y. Y.Han, 2018: The connection between the second leading mode of the winter North Pacific sea surface temperature anomalies and stratospheric sudden warming events. Climate Dyn., 51, 581−595, https://doi.org/10.1007/s00382-017-3942-0.
Lin, P., Q. Fu, and D. L. Hartmann, 2012: Impact of tropical SST on stratospheric planetary waves in the Southern Hemisphere. J. Climate, 25, 5030−5046, https://doi.org/10.1175/JCLI-D-11-00378.1.
Lu, Q., J. Rao, Z. Q. Liang, D. Guo, J. J. Luo, S. M. Liu, C. Wang, and T. Wang, 2021: The sudden stratospheric warming in January 2021. Environmental Research Letters, 16, 084029, https://doi.org/10.1088/1748-9326/ac12f4.
Lu, Q., J. Rao, C. H. Shi, D. Guo, J. Wang, Z. Q. Liang, and T. Wang, 2022: Observational subseasonal variability of the PM2.5 concentration in the Beijing-Tianjin-Hebei area during the January 2021 sudden stratospheric warming. Adv. Atmos. Sci., 39, 1623−1636, https://doi.org/10.1007%2Fs00376-022-1393-y.
Manney, G. L., and Coauthors, 2011: Unprecedented Arctic ozone loss in 2011. Nature, 478, 469−475, https://doi.org/10.1038/nature10556.
Mantua, N. J., and S. R. Hare, 2002: The Pacific Decadal Oscillation. Journal of Oceanography, 58, 35−44, https://doi.org/10.1023/A:1015820616384.
Mantua, N. J., S. R. Hare, Y. Zhang, J. M. Wallace, and R. C. Francis, 1997: A Pacific interdecadal climate oscillation with impacts on salmon production. Bull. Amer. Meteor. Soc., 78, 1069−1080, https://doi.org/10.1175/1520-0477(1997)078<1069:APICOW>2.0.CO;2.
Marsh, D. R., M. J. Mills, D. E. Kinnison, J. F. Lamarque, N. Calvo, and L. M. Polvani, 2013: Climate change from 1850 to 2005 simulated in CESM1(WACCM). J. Climate, 26, 7372−7391, https://doi.org/10.1175/JCLI-D-12-00558.1.
Mills, C. M., and J. E. Walsh, 2013: Seasonal variation and spatial patterns of the atmospheric component of the Pacific Decadal Oscillation. J. Climate, 26, 1575−1594, https://doi.org/10.1175/JCLI-D-12-00264.1.
Newman, M., and Coauthors, 2016: The Pacific Decadal Oscillation, revisited. J. Climate, 29, 4399−4427, https://doi.org/10.1175/JCLI-D-15-0508.1.
Palmeiro, F. M., M. Iza, D. Barriopedro, N. Calvo, and R. García-Herrera, 2017: The complex behavior of El Niño winter 2015−2016. Geophys. Res. Lett., 44, 2902−2910, https://doi.org/10.1002/2017GL072920.
Polvani, L. M., L. T. Sun, A. H. Butler, J. H. Richter, and C. Deser, 2017: Distinguishing stratospheric sudden warmings from ENSO as key drivers of wintertime climate variability over the North Atlantic and Eurasia. J. Climate, 30, 1959−1969, https://doi.org/10.1175/JCLI-D-16-0277.1.
Rao, J., and R. C. Ren, 2016a: A decomposition of ENSO’s impacts on the northern winter stratosphere: Competing effect of SST forcing in the tropical Indian Ocean. Climate Dyn., 46, 3689−3707, https://doi.org/10.1007/s00382-015-2797-5.
Rao, J., and R. C. Ren, 2016b: Asymmetry and nonlinearity of the influence of ENSO on the northern winter stratosphere: 1. Observations. J. Geophys. Res.: Atmos., 121, 9000−9016, https://doi.org/10.1002/2015JD024520.
Rao, J., and R. C. Ren, 2016c: Asymmetry and nonlinearity of the influence of ENSO on the northern winter stratosphere: 2. Model study with WACCM. J. Geophys. Res.: Atmos., 121, 9017−9032, https://doi.org/10.1002/2015JD024521.
Rao, J., and R. C. Ren, 2017: Parallel comparison of the 1982/83, 1997/98 and 2015/16 super El Niños and their effects on the extratropical stratosphere. Adv. Atmos. Sci., 34, 1121−1133, https://doi.org/10.1007/s00376-017-6260-x.
Rao, J., and R. C. Ren, 2018: Varying stratospheric responses to tropical Atlantic SST forcing from early to late winter. Climate Dyn., 51, 2079−2096, https://doi.org/10.1007/s00382-017-3998-x.
Rao, J., and C. I. Garfinkel, 2020: Arctic ozone loss in March 2020 and its seasonal prediction in CFSv2: A comparative study with the 1997 and 2011 cases. J. Geophys. Res.: Atmos., 125, e2020JD033524, https://doi.org/10.1029/2020JD033524.
Rao, J., and C. I. Garfinkel, 2021: CMIP5/6 models project little change in the statistical characteristics of sudden stratospheric warmings in the 21st century. Environ. Res. Lett., 16, 034024, https://doi.org/10.1088/1748-9326/abd4fe.
Rao, J., C. I. Garfinkel, and R. C. Ren, 2019c: Modulation of the northern winter stratospheric El Niño-Southern oscillation teleconnection by the PDO. J. Climate, 32, 5761−5783, https://doi.org/10.1175/JCLI-D-19-0087.1.
Rao, J., S. M. Liu, and Y. H. Chen, 2021: Northern Hemisphere sudden stratospheric warming and its downward impact in four Chinese CMIP6 models. Adv. Atmos. Sci., 38, 187−202, https://doi.org/10.1007/s00376-020-0250-0.
Rao, J., R. C. Ren, X. Xia, C. H. Shi, and D. Guo, 2019a: Combined impact of El Niño-Southern oscillation and Pacific decadal oscillation on the northern winter stratosphere. Atmosphere, 10, 211, https://doi.org/10.3390/atmos10040211.
Rao, J., C. I. Garfinkel, T. W. Wu, Y. X. Lu, and M. Chu, 2022: Mean state of the Northern Hemisphere stratospheric polar vortex in three generations of CMIP models. J. Climate, 35, 4603−4625, https://doi.org/10.1175/JCLI-D-21-0694.1.
Rao, J., R. C. Ren, H. S. Chen, X. W. Liu, Y. Y. Yu, J. G. Hu, and Y. Zhou, 2019b: Predictability of stratospheric sudden warmings in the Beijing climate center forecast system with statistical error corrections. J. Geophys. Res.: Atmos., 124, 8385−8400, https://doi.org/10.1029/2019JD030900.
Rayner, N. A., D. E. Parker, E. B. Horton, C. K. Folland, L. V. Alexander, D. P. Rowell, E. C. Kent, and A. Kaplan, 2003: Global analyses of sea surface temperature, sea ice, and night marine air temperature since the late nineteenth century. J. Geophys. Res.: Atmos., 108, 4407, https://doi.org/10.1029/2002JD002670.
Ren, R. C., X. Xia, and J. Rao, 2019: Topographic forcing from East Asia and North America in the northern winter stratosphere and their mutual interference. J. Climate, 32, 8639−8658, https://doi.org/10.1175/JCLI-D-19-0107.1.
Ren, R. C., M. Cai, C. Y. Xiang, and G. X. Wu, 2012: Observational evidence of the delayed response of stratospheric polar vortex variability to ENSO SST anomalies. Climate Dyn., 38, 1345−1358, https://doi.org/10.1007/s00382-011-1137-7.
Ren, R. C., J. Rao, G. X. Wu, and M. Cai, 2017: Tracking the delayed response of the northern winter stratosphere to ENSO using multi reanalyses and model simulations. Climate Dyn., 48, 2859−2879, https://doi.org/10.1007/s00382-016-3238-9.
Richter, J. H., C. Deser, and L. Sun, 2015: Effects of stratospheric variability on El Niño teleconnections. Environmental Research Letters, 10, 124021, https://doi.org/10.1088/1748-9326/10/12/124021.
Roff, G., D. W. J. Thompson, and H. Hendon, 2011: Does increasing model stratospheric resolution improve extended-range forecast skill? Geophys. Res. Lett., 38, L05809, https://doi.org/10.1029/2010GL046515.
Song, K., and S.-W. Son, 2018: Revisiting the ENSO-SSW relationship. J. Climate, 31, 2133−2143, https://doi.org/10.1175/JCLI-D-17-0078.1.
Song, Y. C., and W. A. Robinson, 2004: Dynamical mechanisms for stratospheric influences on the troposphere. J. Atmos. Sci., 61, 1711−1725, https://doi.org/10.1175/1520-0469(2004)061<1711:DMFSIO>2.0.CO;2.
Sung, M.-K., B.-M. Kim, and S.-I. An, 2014: Altered atmospheric responses to eastern Pacific and central Pacific El Niños over the North Atlantic region due to stratospheric interference. Climate Dyn., 42, 159−170, https://doi.org/10.1007/s00382-012-1661-0.
Takemura, K., and S. Maeda, 2016: Influence of enhanced variability with zonal wavenumber 1 on Arctic Oscillation in late winter to early spring in El Niño conditions. SOLA, 12, 159−164, https://doi.org/10.2151/sola.2016-033.
Thompson, D. W. J., S. Solomon, P. J. Kushner, M. H. England, K. M. Grise, and D. J. Karoly, 2011: Signatures of the Antarctic ozone hole in Southern Hemisphere surface climate change. Nature Geoscience, 4, 741−749, https://doi.org/10.1038/ngeo1296.
Vertenstein, M., T. Craig, A. Middleton, D. Feddema, and C. Fischer, 2012: CESM1.0.4 user’s guide. National Center of Atmosphere Research, Boulder.
Wang, T., W. S. Tian, J. K. Zhang, F. Xie, R. H. Zhang, J. L. Huang, and D. Z. Hu, 2020: Connections between spring Arctic ozone and the summer circulation and sea surface temperatures over the western North Pacific. J. Climate, 33, 2907−2923, https://doi.org/10.1175/JCLI-D-19-0292.1.
Wang, T., W. S. Tian, J. K. Zhang, M. Xu, T. Lian, D. Z. Hu, and K. Qie, 2022a: Surface ocean current variations in the North Pacific related to Arctic stratospheric ozone. Climate Dyn.,
Wang, T., W. S. Tian, T. Lian, C. Sun, F. Xie, J. K. Zhang, and Q. Q. Yin, 2022b: Meridional position changes of the sea surface temperature anomalies in the North Pacific. J. Climate, 35, 305−321, https://doi.org/10.1175/JCLI-D-21-0039.1.
Weinberger, I., C. I. Garfinkel, I. P. White, and L. D. Oman, 2019: The salience of nonlinearities in the boreal winter response to ENSO: Arctic stratosphere and Europe. Climate Dyn., 53, 4591−4610, https://doi.org/10.1007/s00382-019-04805-1.
Woo, S. H., M. K. Sung, S. W. Son, and J. S. Kug, 2015: Connection between weak stratospheric vortex events and the Pacific Decadal Oscillation. Climate Dyn., 45, 3481−3492, https://doi.org/10.1007/s00382-015-2551-z.
Xie, F., J. Li, W. Tian, J. Feng, and Y. Huo, 2012: Signals of El Niño Modoki in the tropical tropopause layer and stratosphere. Atmospheric Chemistry and Physics, 12, 5259−5273, https://doi.org/10.5194/acp-12-5259-2012.
Yang, S. Y., T. M. Li, J. G. Hu, and X. Shen, 2017: Decadal variation of the impact of La Niña on the winter Arctic stratosphere. Adv. Atmos. Sci., 34, 679−684, https://doi.org/10.1007/s00376-016-6184-x.
Zhang, J. K., W. S. Tian, M. P. Chipperfield, F. Xie, and J. L. Huang, 2016: Persistent shift of the Arctic polar vortex towards the Eurasian continent in recent decades. Nature Climate Change, 6, 1094−1099, https://doi.org/10.1038/nclimate3136.
Zhou, X., J. P. Li, F. Xie, R. Q. Ding, Y. J. Li, S. Zhao, J. K. Zhang, and Y. Li, 2018: The effects of the Indo-Pacific warm pool on the stratosphere. Climate Dyn., 51, 4043−4064, https://doi.org/10.1007/s00382-017-3584-2.