Akinsanola, A., and W. Zhou, 2019: Projections of West African summer monsoon rainfall extremes from two CORDEX models. Climate Dyn., 52, 2017−2028, https://doi.org/10.1007/s00382-018-4238-8.
Cao, J., and Coauthors, 2018: The NUIST Earth System Model (NESM) version 3: Description and preliminary evaluation. Geoscientific Model Development, 11, 2975−2993, https://doi.org/10.5194/gmd-11-2975-2018.
Chen, H. P., and J. Q. Sun, 2014: Robustness of precipitation projections in China: Comparison between CMIP5 and CMIP3 models. Atmos. Ocean. Sci. Lett., 7, 67−73, https://doi.org/10.3878/j.issn.1674-2834.13.0071.
Chen, H. P., and J. Q. Sun, 2015: Assessing model performance of climate extremes in China: An intercomparison between CMIP5 and CMIP3. Climatic Change, 129, 197−211, https://doi.org/10.1007/s10584-014-1319-5.
Chen, L., and O. W. Frauenfeld, 2014: A comprehensive evaluation of precipitation simulations over China based on CMIP5 multimodel ensemble projections. J. Geophys. Res.: Atmos., 119, 5767−5786, https://doi.org/10.1002/2013JD021190.
Chen, L., Z. G. Ma, and X. G. Fan, 2012: A comparative study of two land surface schemes in WRF model over Eastern China. Journal of Tropical Meteorology, 18, 445−456.
Chen, W. L., Z. H. Jiang, and L. Li, 2011: Probabilistic projections of climate change over China under the SRES A1B scenario using 28 AOGCMs. J. Climate, 24, 4741−4756, https://doi.org/10.1175/2011JCLI4102.1.
Chen, X. C., Y. Xu, C. H. Xu, and Y. Yao, 2014: Assessment of precipitation simulations in China by CMIP5 multi-models. Progressus Inquisitiones de Mutatione Climatis, 10, 217−225, https://doi.org/10.3969/j.issn.1673-1719.2014.03.011. (in Chinese with English abstract)
Committee of the Third China’s National Assessment Report on Climate Change, 2015: The Third China’s National Assessment Report on Climate Change. Science Press. (in Chinese)
Dong, S. Y., Y. Xu, B. T. Zhou, and Y. Shi, 2015: Assessment of indices of temperature extremes simulated by multiple CMIP5 models over China. Adv. Atmos. Sci., 32, 1077−1091, https://doi.org/10.1007/s00376-015-4152-5.
Eyring, V., S. Bony, G. A. Meehl, C. A. Senior, B. Stevens, R. J. Stouffer, and K. E. Taylor, 2016: Overview of the Coupled Model Intercomparison Project Phase 6 (CMIP6) experimental design and organization. Geoscientific Model Development, 9, 1937−1958, https://doi.org/10.5194/gmd-9-1937-2016.
Flato, G., and Coauthors, 2013: Evaluation of climate models. Climate change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change, Cambridge University Press, 741−866.
Frich, P., L. V. Alexander, P. Della-Marta, B. Gleason, M. Haylock, A. M. G. Klein Tank, and T. Peterson, 2002: Observed coherent changes in climatic extremes during the second half of the twentieth century. Climate Research, 19, 193−212, https://doi.org/10.3354/cr019193.
Gao, X., Y. Shi, R. Song, F. Giorgi, Y. Wang, and D. Zhang, 2008: Reduction of future monsoon precipitation over China: Comparison between a high resolution RCM simulation and the driving GCM. Meteorol. Atmos. Phys., 100, 73−86, https://doi.org/10.1007/s00703-008-0296-5.
Gao, Y., H. J. Wang, and D. B. Jiang, 2015: An intercomparison of CMIP5 and CMIP3 models for interannual variability of summer precipitation in Pan‐Asian monsoon region. International Journal of Climatology, 35, 3770−3780, https://doi.org/10.1002/joc.4245.
Guo, Y., W. J. Dong, F. M. Ren, Z. C. Zhao, and J. B. Huang, 2013: Assessment of CMIP5 simulations for China annual average surface temperature and its comparison with CMIP3 simulations. Progressus Inquisitiones de Mutatione Climatis, 9, 181−186, https://doi.org/10.3969/j.issn.1673-1719.2013.03.004. (in Chinese with English abstract)
Gusain, A., S. Ghosh, and S. Karmakar, 2020: Added value of CMIP6 over CMIP5 models in simulating Indian summer monsoon rainfall. Atmospheric Research, 232, 104680, https://doi.org/10.1016/j.atmosres.2019.104680.
IPCC, 2007: Climate Change 2007: The Physical Science Basis. Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change, Solomon et al., Eds., IPCC Fourth Assessment Report. Climate Change 2007, Working Group I Report "The Physical Science Basis", Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA, 996 pp.
IPCC, 2012: Changes in climate extremes and their impacts on the natural physical environment. Managing the Risks of Extreme Events and Disasters to Advance Climate Change Adaptation. A Special Report of Working Groups I and II of the Intergovernmental Panel on Climate Change, S. I. N. Nicholls, et al., Eds., Cambridge University Press, 109−230.
IPCC, 2013: Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change, T. F. Stocker, et al., Eds., Cambridge University Press.
Jiang, D. B., Y. Zhang, and J. Q. Sun, 2009: Ensemble projection of 1-3°C warming in China. Chinese Science Bulletin, 54, 3326−3334, https://doi.org/10.1007/s11434-009-0313-1.
Jiang, D. B., Z. P. Tian, and X. M. Lang, 2016: Reliability of climate models for China through the IPCC Third to Fifth Assessment Reports. International Journal of Climatology, 36, 1114−1133, https://doi.org/10.1002/joc.4406.
Jiang, Z. H., J. Song, L. Li, W. L. Chen, Z. F. Wang, and J. Wang, 2012: Extreme climate events in China: IPCC-AR4 model evaluation and projection. Climatic Change, 110, 385−401, https://doi.org/10.1007/s10584-011-0090-0.
Jiang, Z. H., W. Li, J. J. Xu, and L. Li, 2015: Extreme precipitation indices over China in CMIP5 models. Part I: Model evaluation. J. Climate, 28, 8603−8619, https://doi.org/10.1175/JCLI-D-15-0099.1.
Kawai, H., S. Yukimoto, T. Koshiro, N. Oshima, T. Tanaka, H. Yoshimura, and R. Nagasawa, 2019: Significant improvement of cloud representation in the global climate model MRI-ESM2. Geoscientific Model Development, 12, 2875−2897, https://doi.org/10.5194/gmd-12-2875-2019.
Koutroulis, A. G., M. G. Grillakis, I. K. Tsanis, and L. Papadimitriou, 2016: Evaluation of precipitation and temperature simulation performance of the CMIP3 and CMIP5 historical experiments. Climate Dyn., 47, 1881−1898, https://doi.org/10.1007/s00382-015-2938-x.
Kusunoki, S., and O. Arakawa, 2015: Are CMIP5 models better than CMIP3 models in simulating precipitation over East Asia? J. Climate, 28, 5601−5621, https://doi.org/10.1175/JCLI-D-14-00585.1.
Li, F. Y., D. Rosa, W. D. Collins, and M. F. Wehner, 2012: “Super‐parameterization”: A better way to simulate regional extreme precipitation? Journal of Advances in Modeling Earth Systems, 4, M04002, https://doi.org/10.1029/2011MS000106.
Meehl, G. A., C. Covey, T. Delworth, M. Latif, B. McAvaney, J. F. B. Mitchell, R. J. Stouffer, and K. E. Taylor, 2007: The WCRP CMIP3 multimodel dataset: A new era in climate change research. Bull. Amer. Meteorol. Soc., 88, 1383−1394, https://doi.org/10.1175/BAMS-88-9-1383.
Mehran, A., A. AghaKouchak, and T. J. Phillips, 2014: Evaluation of CMIP5 continental precipitation simulations relative to satellite-based gauge-adjusted observations. J. Geophys. Res.: Atmos., 119, 1695−1707, https://doi.org/10.1002/2013JD021152.
O'Neill, B. C., and Coauthors, 2016: The scenario model intercomparison project (ScenarioMIP) for CMIP6. Geoscientific Model Development, 9, 3461−3482, https://doi.org/10.5194/gmd-9-3461-2016.
Ou, T. H., D. L. Chen, H. W. Linderholm, and J. H. Jeong, 2013: Evaluation of global climate models in simulating extreme precipitation in China. Tellus A: Dyn. Meteorol. Oceanogr., 65, 19799, https://doi.org/10.3402/tellusa.v65i0.19799.
Park, S., J. Shin, S. Kim, E. Oh, and Y. Kim, 2019: Global climate simulated by the seoul national university atmosphere model version 0 with a unified convection scheme (SAM0-UNICON). J. Climate, 32, 2917−2949, https://doi.org/10.1175/JCLI-D-18-0796.1.
Rosa, D., and W. Collins, 2013: A case study of subdaily simulated and observed continental convective precipitation: CMIP5 and multiscale global climate models comparison. Geophys. Res. Lett., 40, 5999−6003, https://doi.org/10.1002/2013GL057987.
Sillmann, J., V. V. Kharin, X. Zhang, F. W. Zwiers, and D. Bronaugh, 2013: Climate extremes indices in the CMIP5 multimodel ensemble: Part 1. Model evaluation in the present climate. J. Geophys. Res.: Atmos., 118, 1716−1733, https://doi.org/10.1002/jgrd.50203.
Sillmann, J., V. V. Kharin, F. W. Zwiers, X. Zhang, D. Bronaugh, and M. G. Donat, 2014: Evaluating model‐simulated variability in temperature extremes using modified percentile indices. International Journal of Climatology, 34, 3304−3311, https://doi.org/10.1002/joc.3899.
Song, Y. J., F. L. Qiao, Z. Y. Song, and C. F. Jiang, 2013: Water vapor transport and cross-equatorial flow over the Asian-Australia monsoon region simulated by CMIP5 climate models. Adv. Atmos. Sci., 30, 726−738, https://doi.org/10.1007/s00376-012-2148-y.
Sperber, K. R., H. Annamalai, I. S. Kang, A. Kitoh, A. Moise, A. Turner, B. Wang, and T. Zhou, 2013: The Asian summer monsoon: An intercomparison of CMIP5 vs. CMIP3 simulations of the late 20th century. Climate Dyn., 41, 2711−2744, https://doi.org/10.1007/s00382-012-1607-6.
Su, F. G., X. L. Duan, D. L. Chen, Z. C. Hao, and L. Cuo, 2013: Evaluation of the global climate models in the CMIP5 over the Tibetan Plateau. J. Climate, 26, 3187−3208, https://doi.org/10.1175/JCLI-D-12-00321.1.
Sun, Q. H., C. Y. Miao, and Q. Y. Duan, 2015: Comparative analysis of CMIP3 and CMIP5 global climate models for simulating the daily mean, maximum, and minimum temperatures and daily precipitation over China. J. Geophys. Res.: Atmos., 120, 4806−4824, https://doi.org/10.1002/2014JD022994.
Taylor, K. E., 2001: Summarizing multiple aspects of model performance in a single diagram. J. Geophys. Res.: Atmos., 106, 7183−7192, https://doi.org/10.1029/2000JD900719.
Taylor, K. E., R. J. Stouffer, and G. A. Meehl, 2012: An overview of CMIP5 and the experiment design. Bull. Amer. Meteorol. Soc., 93, 485−498, https://doi.org/10.1175/BAMS-D-11-00094.1.
Voldoire, A., and Coauthors, 2019: Evaluation of CMIP6 DECK Experiments With CNRM-CM6-1. Journal of Advances in Modeling Earth Systems, 11, 2177−2213, https://doi.org/10.1029/2019MS001683.
Wang, B., L. H. Zheng, D. L. Liu, F. Ji, A. Clark, and Q. Yu, 2018: Using multi-model ensembles of CMIP5 global climate models to reproduce observed monthly rainfall and temperature with machine learning methods in Australia. International Journal of Climatology, 38, 4891−4902, https://doi.org/10.1002/joc.5705.
Wu, J., and X. J. Gao, 2013: A gridded daily observation dataset over China region and comparison with the other datasets. Chinese Journal of Geophysics, 56, 1102−1111, https://doi.org/10.6038/cjg20130406. (in Chinese with English abstract)
Wu, T. W., and Coauthors, 2019: The Beijing climate center climate system model (BCC-CSM): The main progress from CMIP5 to CMIP6. Geoscientific Model Development, 12, 1573−1600, https://doi.org/10.5194/gmd-12-1573-2019.
Xu, Y., X. J. Gao, and F. Giorgi, 2010: Upgrades to the reliability ensemble averaging method for producing probabilistic climate-change projections. Climate Research, 41, 61−81, https://doi.org/10.3354/cr00835.
Xu, Y., X. J. Gao, F. Giorgi, B. T. Zhou, Y. Shi, J. Wu, and Y. X. Zhang, 2018: Projected changes in temperature and precipitation extremes over China as measured by 50-yr return values and periods based on a CMIP5 ensemble. Adv. Atmos. Sci., 35, 376−388, https://doi.org/10.1007/s00376-017-6269-1.
Zhang, X. B., and Coauthors, 2011: Indices for monitoring changes in extremes based on daily temperature and precipitation data. Wiley Interdisciplinary Reviews: Climate Change, 2, 851−870, https://doi.org/10.1002/wcc.147.
Zhou, B. T., Q. Z. H. Wen, Y. Xu, L. C. Song, and X. B. Zhang, 2014: Projected changes in temperature and precipitation extremes in China by the CMIP5 multimodel ensembles. J. Climate, 27, 6591−6611, https://doi.org/10.1175/JCLI-D-13-00761.1.
Zhou, L. M., A. G. Dai, Y. J. Dai, R. S. Vose, C. Z. Zou, Y. H. Tian, and H. S. Chen, 2009: Spatial dependence of diurnal temperature range trends on precipitation from 1950 to 2004. Climate Dyn., 32, 429−440, https://doi.org/10.1007/s00382-008-0387-5.