Bender, M. A., R. Ross, R. E. Tuleya, and Y. Kurihara, 1993: Improvements in tropical cyclone track and intensity forecasts using the GFDL initialization system. Mon. Wea. Rev., 121, 2046−2061, https://doi.org/10.1175/1520-0493(1993)121<2046:IITCTA>2.0.CO;2.
Carrasco, C. A., C. W. Landsea, and Y.-L. Lin, 2014: The influence of tropical cyclone size on its intensification. Wea. Forecasting, 29, 582−590, https://doi.org/10.1175/WAF-D-13-00092.1.
Cha, D.-H., C.-S. Jin, D.-K. Lee, and Y.-H. Kuo, 2011: Impact of intermittent spectral nudging on regional climate simulation using Weather Research and Forecasting model. J. Geophys. Res., 116, D10103, https://doi.org/10.1029/2010JD015069.
Cha, D.-H., and Y. Q. Wang, 2013: A dynamical initialization scheme for real-time forecasts of tropical cyclones using the WRF Model. Mon. Wea. Rev., 141, 964−986, https://doi.org/10.1175/MWR-D-12-00077.1.
Chang, C.-C., and C.-C. Wu, 2017: On the processes leading to the rapid intensification of Typhoon Megi (2010). J. Atmos. Sci., 74, 1169−1200, https://doi.org/10.1175/JAS-D-16-0075.1.
Chang, Y. P., S.-C. Yang, K.-J. Lin, G.-Y. Lien, and C.-M. Wu, 2020: Impact of tropical cyclone initialization on its convection development and intensity: A case study of typhoon Megi (2010). J. Atmos. Sci., 77, 443−464, https://doi.org/10.1175/JAS-D-19-0058.1.
Charney, J. G., and A. Eliassen, 1964: On the growth of the hurricane depression. J. Atmos. Sci., 21, 68−75, https://doi.org/10.1175/1520-0469(1964)021<0068:OTGOTH>2.0.CO;2.
Chen, H., and D. L. Zhang, 2013: On the rapid intensification of Hurricane Wilma (2005). Part II: Convective bursts and the upper-level warm core. J. Atmos. Sci., 70, 146−162, https://doi.org/10.1175/JAS-D-12-062.1.
Chen, G. H., C.-C. Wu, and Y.-H. Huang, 2018a: The role of near-core convective and stratiform heating/cooling in tropical cyclone structure and intensity. J. Atmos. Sci., 75, 297−326, https://doi.org/10.1175/JAS-D-17-0122.1.
Chen, S. S., J. A. Knaff, and F. D. Marks Jr., 2006: Effects of vertical wind shear and storm motion on tropical cyclone rainfall asymmetries deduced from TRMM. Mon. Wea. Rev., 134, 3190−3208, https://doi.org/10.1175/MWR3245.1.
Chen, X. M., M. Xue, and J. Fang, 2018b: Rapid intensification of Typhoon Mujigae (2015) under different sea surface temperatures: Structural changes leading to rapid intensification. J. Atmos. Sci., 75, 4313−4335, https://doi.org/10.1175/JAS-D-18-0017.1.
Chen, X. M., Y. Q. Wang, and K. Zhao, 2015: Synoptic flow patterns and large-scale characteristics associated with rapidly intensifying tropical cyclones in the South China Sea. Mon. Wea. Rev., 143, 64−87, https://doi.org/10.1175/MWR-D-13-00338.1.
Chen, X. M., Y. Q. Wang, K. Zhao, and D. Wu, 2017: A numerical study on rapid intensification of Typhoon Vicente (2012) in the South China Sea. Part I: Verification of simulation, storm-scale evolution, and environmental contribution. Mon. Wea. Rev., 145, 877−898, https://doi.org/10.1175/MWR-D-16-0147.1.
Corbosiero, K. L., and J. Molinari, 2003: The relationship between storm motion, vertical wind shear, and convective asymmetries in tropical cyclones. J. Atmos. Sci., 60, 366−376, https://doi.org/10.1175/1520-0469(2003)060<0366:TRBSMV>2.0.CO;2.
Dai, Y., S. J. Majumdar, and D. S. Nolan, 2019: The outflow-rainband relationship induced by environmental flow around tropical cyclones. J. Atmos. Sci., 76, 1845−1863, https://doi.org/10.1175/JAS-D-18-0208.1.
DeMaria, M., M. Mainelli, L. K. Shay, J. A. Knaff, and J. Kaplan, 2005: Further improvements to the Statistical Hurricane Intensity Prediction Scheme (SHIPS). Wea. Forecasting, 20, 531−543, https://doi.org/10.1175/WAF862.1.
DeMaria, M., 2009: A simplified dynamical system for tropical cyclone intensity prediction. Mon. Wea. Rev., 137, 68−82, https://doi.org/10.1175/2008MWR2513.1.
DeMaria, M., J. Kaplan, and J.-J. Baik, 1993: Upper-Level eddy angular momentum fluxes and tropical cyclone intensity change. J. Atmos. Sci., 50, 1133−1147, https://doi.org/10.1175/1520-0469(1993)050<1133:ULEAMF>2.0.CO;2.
Dudhia, J., 1989: Numerical study of convection observed during the Winter Monsoon Experiment using a mesoscale twodimensional model. J. Atmos. Sci., 46, 3077−3107, https://doi.org/10.1175/1520-0469(1989)046,3077:NSOCOD.2.0.CO;2.
Emanuel, K., and F. Q. Zhang, 2016: On the predictability and error sources of tropical cyclone intensity forecasts. J. Atmos. Sci., 73, 3739−3747, https://doi.org/10.1175/JAS-D-16-0100.1.
Fischer, M. S., B. H. Tang, and K. L. Corbosiero, 2017: Assessing the influence of upper-tropospheric troughs on tropical cyclone intensification rates after genesis. Mon. Wea. Rev., 145, 1295−1313, https://doi.org/10.1175/MWR-D-16-0275.1.
Ge, X. Y., T. Li, and M. L. D. Peng, 2013: Effects of vertical shears and midlevel dry air on tropical cyclone developments. J. Atmos. Sci., 70, 3859−3875, https://doi.org/10.1175/JAS-D-13-066.1.
Ge, X. Y., Y. Ma, S. W. Zhou, and T. Li, 2015: Sensitivity of the warm core of tropical cyclones to solar radiation. Adv. Atmos. Sci., 32, 1038−1048, https://doi.org/10.1007/s00376-014-4206-0.
Hack, J. J., and W. H. Schubert, 1986: Nonlinear response of atmospheric vortices to heating by organized cumulus convection. J. Atmos. Sci., 43, 1559−1573, https://doi.org/10.1175/1520-0469(1986)043<1559:NROAVT>2.0.CO;2.
Hanley, D., J. Molinari, and D. Keyser, 2001: A composite study of the interactions between tropical cyclones and upper-tropospheric troughs. Mon. Wea. Rev., 129, 2570−2584, https://doi.org/10.1175/1520-0493(2001)129<2570:ACSOTI>2.0.CO;2.
Harnos, D. S., and S. W. Nesbitt, 2016: Varied pathways for simulated tropical cyclone rapid intensification. Part II: Vertical motion and cloud populations. Quart. J. Roy. Meteorol. Soc., 142, 1832−1846, https://doi.org/10.1002/qj.2778.
Heming, J. T., 2016: Met Office Unified Model tropical cyclone performance following major changes to the initialization scheme and a model upgrade. Wea. Forecasting, 31, 1433−1449, https://doi.org/10.1175/WAF-D-16-0040.1.
Hence, D. A., and R. A. Houze Jr., 2008: Kinematic structure of convective-scale elements in the rainbands of Hurricanes Katrina and Rita (2005). J. Geophys. Res., 113, D15108, https://doi.org/10.1029/2007JD009429.
Hendricks, E. A., M. S. Peng, T. Li, and X. Ge, 2011: Performance of a dynamic initialization scheme in the Coupled Ocean-Atmosphere Mesoscale Prediction System for Tropical Cyclones (COAMPS-TC). Wea. Forecasting, 26, 650−663, https://doi.org/10.1175/WAF-D-10-05051.1.
Holland, G. J., 1980: An analytic model of the wind and pressure profiles in hurricanes. Mon. Wea. Rev., 108, 1212−1218, https://doi.org/10.1175/1520-0493(1980)108<1212:AAMOTW>2.0.CO;2.
Honda, T., and Coauthors, 2018: Assimilating all-sky Himawari-8 satellite infrared radiances: A case of Typhoon Soudelor (2015). Mon. Wea. Rev., 146, 213−229, https://doi.org/10.1175/MWR-D-16-0357.1.
Hong, S. Y., J. Dudhia, and S. H. Chen, 2004: A revised approach to ice microphysical processes for the bulk parameterization of clouds and precipitation. Mon. Wea. Rev., 132, 103−120, https://doi.org/10.1175/1520-0493(2004)132,0103:ARATIM.2.0.CO;2.
Jones, S. C., 1995: The evolution of vortices in vertical shear. I: Initially barotropic vortices. Quart. J. Roy. Meteorol. Soc., 121, 821−851, https://doi.org/10.1002/qj.49712152406.
Kain, J. S., and J. M. Fritsch, 1993: Convective parameterization for mesoscale models: The Kain-Fritsch scheme. The Representation of Cumulus Convection in Numerical Models, Meteor. Monogr., No. 24, Amer. Meteor. Soc., 165−170.
Kaplan, J., and M. DeMaria, 2003: Large-scale characteristics of rapidly intensifying tropical cyclones in the north Atlantic basin. Wea. Forecasting, 18, 1093−1108, https://doi.org/10.1175/1520-0434(2003)018<1093:LCORIT>2.0.CO;2.
Kaplan, J., M. DeMaria, and J. A. Knaff, 2010: A revised tropical cyclone rapid intensification index for the Atlantic and eastern North Pacific basins. Wea. Forecasting, 25, 220−241, https://doi.org/10.1175/2009WAF2222280.1.
Kaplan, J. and Coauthors, 2015: Evaluating environmental impacts on tropical cyclone rapid intensification predictability utilizing statistical models. Wea. Forecasting, 30, 1374−1396, https://doi.org/10.1175/waf-d-15-0032.1.
Kieper, M. E., and H. Y. Jiang, 2012: Predicting tropical cyclone rapid intensification using the 37 GHz ring pattern identified from passive microwave measurements. Geophys. Res. Lett., 39, L13804, https://doi.org/10.1029/2012GL052115.
Knaff, J. A., C. R. Sampson, and K. D. Musgrave, 2018: An operational rapid intensification prediction aid for the western North Pacific. Wea. Forecasting, 33, 799−811, https://doi.org/10.1175/WAF-D-18-0012.1.
Kurihara, Y., M. A. Bender, and R. J. Ross, 1993: An initialization scheme of hurricane models by vortex specification. Mon. Wea. Rev., 121, 2030−2045, https://doi.org/10.1175/1520-0493(1993)121<2030:AISOHM>2.0.CO;2.
Kwon, I.-H., and H.-B. Cheong, 2010: Tropical cyclone initialization with a spherical high-order filter and an idealized three-dimensional bogus vortex. Mon. Wea. Rev., 138, 1344−1367, https://doi.org/10.1175/2009MWR2943.1.
Lee, J.-D., and C.-C. Wu, 2018: The role of polygonal eyewalls in rapid intensification of Typhoon Megi (2010). J. Atmos. Sci., 75, 4175−4199, https://doi.org/10.1175/JAS-D-18-0100.1.
Leslie, L. M., and G. J. Holland, 1995: On the bogussing of tropical cyclones in numerical models: A comparison of vortex profiles. Meteorol. Atmos. Phys., 56, 101−110, https://doi.org/10.1007/BF01022523.
Liang, J., L. G. Wu, and G. J. Gu, 2018: Numerical study of the influences of a monsoon gyre on intensity changes of Typhoon Chan-Hom (2015). Adv. Atmos. Sci., 35, 567−579, https://doi.org/10.1007/s00376-017-7155-6.
Low-Nam, S., and C. Davis, 2001: Development of a tropical cyclone bogussing scheme for the MM5 system. Proc. 11th PSU/NCAR Mesoscale Model Users’ Workshop, Boulder, CO, NCAR, 130−134.
Mlawer, E. J., S. J. Taubman, P. D. Brown, M. J. Iacono, and S. A. Clough, 1997: Radiative transfer for inhomogeneous atmosphere: RRTM, a validated correlated-k model for the longwave. J. Geophys. Res., 102, 16663−16682, https://doi.org/10.1029/97JD00237.
Miyamoto, Y., and T. Takemi, 2015: A triggering mechanism for rapid intensification of tropical cyclones. J. Atmos. Sci., 72, 2666−2681, https://doi.org/10.1175/JAS-D-14-0193.1.
Molinari, J., and D. Vollaro, 2010: Rapid intensification of a sheared tropical storm. Mon. Wea. Rev., 138, 3869−3885, https://doi.org/10.1175/2010MWR3378.1.
Nguyen, L. T., J. Molinari, and D. Thomas, 2014: Evaluation of tropical cyclone center identification methods in numerical models. Mon. Wea. Rev., 142, 4326−4339, https://doi.org/10.1175/MWR-D-14-00044.1.
Ooyama, K., 1969: Numerical simulation of the life cycle of tropical cyclones. J. Atmos. Sci., 26, 3−40, https://doi.org/10.1175/1520-0469(1969)026<0003:NSOTLC>2.0.CO;2.
Pendergrass, A. G., and H. E. Willoughby, 2009: Diabatically induced secondary flows in tropical cyclones. Part I: Quasi-steady forcing. Mon. Wea. Rev., 137, 805−821, https://doi.org/10.1175/2008MWR2657.1.
Peng, M. S., B.-F. Jeng, and C.-P. Chang, 1993: Forecast of typhoon motion in the vicinity of Taiwan during 1989-90 using a dynamical model. Wea. Forecasting, 8, 309−325, https://doi.org/10.1175/1520-0434(1993)008<0309:FOTMIT>2.0.CO;2.
Powell, M. D., 1990: Boundary layer structure and dynamics in outer hurricane rainbands. Part II: Downdraft modification and mixed layer recovery. Mon. Wea. Rev., 118, 918−938, https://doi.org/10.1175/1520-0493(1990)118<0918:BLSADI>2.0.CO;2.
Qin, N. N., and D.-L. Zhang, 2018: On the extraordinary intensification of Hurricane Patricia (2015). Part I: Numerical experiments. Wea. Forecasting, 33, 1205−1224, https://doi.org/10.1175/WAF-D-18-0045.1.
Rappaport, E. N., and Coauthors, 2009: Advances and challenges at the National Hurricane Center. Wea. Forecasting, 24, 395−419, https://doi.org/10.1175/2008WAF2222128.1.
Reynolds, R. W., T. M. Smith, C. Y. Liu, D. B. Chelton, K. S. Casey, and M. G. Schlax, 2007: Daily high-resolution-blended analyses for sea surface temperature. J. Climate, 20, 5473−5496, https://doi.org/10.1175/2007JCLI1824.1.
Rios-Berrios, R., C. A. Davis, and R. D. Torn, 2018: A hypothesis for the intensification of tropical cyclones under moderate vertical wind shear. J. Atmos. Sci., 75, 4149−4173, https://doi.org/10.1175/JAS-D-18-0070.1.
Rogers, R., 2010: Convective-scale structure and evolution during a high-resolution simulation of tropical cyclone rapid intensification. J. Atmos. Sci., 67, 44−70, https://doi.org/10.1175/2009JAS3122.1.
Rogers, R., P. Reasor, and S. Lorsolo, 2013: Airborne Doppler observations of the inner-core structural differences between intensifying and steady-state tropical cyclones. Mon. Wea. Rev., 141, 2970−2991, https://doi.org/10.1175/MWR-D-12-00357.1.
Rogers, R. F., P. D. Reasor and J. A. Zhang, 2015: Multiscale structure and evolution of Hurricane Earl (2010) during rapid intensification. Mon. Wea. Rev., 143, 536−562, https://doi.org/10.1175/MWR-D-14-00175.1.
Rozoff, C. M., and J. P. Kossin, 2011: New probabilistic forecast models for the prediction of tropical cyclone rapid intensification. Wea. Forecasting, 26, 677−689, https://doi.org/10.1175/WAF-D-10-05059.1.
Rozoff, C. M., C. S. Velden, J. Kaplan, J. P. Kossin, and A. J. Wimmers, 2015: Improvements in the probabilistic prediction of tropical cyclone rapid intensification with passive microwave observations. Wea. Forecasting, 30, 1016−1038, https://doi.org/10.1175/WAF-D-14-00109.1.
Ryglicki, D. R., J. D. Doyle, D. Hodyss, J. H. Cossuth, Y. Jin, K. C. Viner, and J. M. Schmidt, 2019: The unexpected rapid intensification of tropical cyclones in moderate vertical wind shear. Part III: Outflow-environment interaction. Mon. Wea. Rev., 147, 2919−2940, https://doi.org/10.1175/MWR-D-18-0370.1.
Schubert, W. H., and J. J. Hack, 1982: Inertial stability and tropical cyclone development. J. Atmos. Sci., 39, 1687−1697, https://doi.org/10.1175/1520-0469(1982)039<1687:ISATCD>2.0.CO;2.
Shapiro, L. J., and H. E. Willoughby, 1982: The response of balanced hurricanes to local sources of heat and momentum. J. Atmos. Sci., 39, 378−394, https://doi.org/10.1175/1520-0469(1982)039<0378:TROBHT>2.0.CO;2.
Shi, D. L., X. Y. Ge, and M. L. D. Peng, 2019: Latitudinal dependence of the dry air effect on tropical cyclone development. Dyn. Atmos. Oceans, 87, 101102, https://doi.org/10.1016/j.dynatmoce.2019.101102.
Skamarock, W. C., and Coauthors, 2008: A description of the advanced research WRF version 3. NCAR/TN-475+STR, 113 pp, https://doi.org/10.5065/D68S4MVH.
Smith, R. K. and M. T. Montgomery, 2015: Toward clarity on understanding tropical cyclone intensification. J. Atmos. Sci., 72, 3020−3031, https://doi.org/10.1175/JAS-D-15-0017.1.
Sun, Y., Z. Zhong, L. Yi, Y. Ha, and Y. M. Sun, 2014: The opposite effects of inner and outer sea surface temperature on tropical cyclone intensity. J. Geophys. Res., 119, 2193−2208, https://doi.org/10.1002/2013JD021354.
Susca-Lopata, G., J. Zawislak, E. J. Zipser, and R. F. Rogers, 2015: The role of observed environmental conditions and precipitation evolution in the rapid intensification of Hurricane Earl (2010). Mon. Wea. Rev., 143, 2207−2223, https://doi.org/10.1175/MWR-D-14-00283.1.
Tallapragada, V., and Coauthors, 2015: Hurricane Weather Research and Forecasting (HWRF) Model: 2015 scientific documentation. NCAR/TN-522+STR, 122 pp.
Tang, B., and K. Emanuel, 2010: Midlevel ventilation’s constraint on tropical cyclone intensity. J. Atmos. Sci., 67, 1817−1830, https://doi.org/10.1175/2010JAS3318.1.
Tao, D. D., and F. Q. Zhang, 2019: Evolution of dynamic and thermodynamic structures before and during rapid intensification of tropical cyclones: Sensitivity to vertical wind shear. Mon. Wea. Rev., 147, 1171−1191, https://doi.org/10.1175/MWR-D-18-0173.1.
Thompson, G., P. R. Field, R. M. Rasmussen, and W. D. Hall, 2008: Explicit forecasts of winter precipitation using an improved bulk microphysics scheme. Part II: Implementation of a new snow parameterization. Mon. Wea. Rev., 136, 5095−5115, https://doi.org/10.1175/2008MWR2387.1.
van Nguyen, H., and Y.-L. Chen, 2011: High-resolution initialization and simulations of Typhoon Morakot (2009). Mon. Wea. Rev., 139, 1463−1491, https://doi.org/10.1175/2011MWR3505.1.
van Nguyen, H., and Y.-L. Chen, 2014: Improvements to a tropical cyclone initialization scheme and impacts on forecasts. Mon. Wea. Rev., 142, 4340−4356, https://doi.org/10.1175/MWR-D-13-00326.1.
Vigh, J. L., and W. H. Schubert, 2009: Rapid development of the tropical cyclone warm core. J. Atmos. Sci., 66, 3335−3350, https://doi.org/10.1175/2009JAS3092.1.
von Storch, H., H. Langenberg, and F. Feser, 2000: A spectral nudging technique for dynamical downscaling purposes. Mon. Wea. Rev., 128, 3664−3673, https://doi.org/10.1175/1520-0493(2000)128<3664:ASNTFD>2.0.CO;2.
Wadler, J. B., R. F. Rogers, and P. D. Reasor, 2018: The relationship between spatial variations in the structure of convective bursts and tropical cyclone intensification as determined by airborne Doppler radar. Mon. Wea. Rev., 146, 761−780, https://doi.org/10.1175/MWR-D-17-0213.1.
Wang, H., Y. Q. Wang, and H. M. Xu, 2013: Improving simulation of a tropical cyclone using dynamical initialization and large-scale spectral nudging: A case study of Typhoon Megi (2010). Acta Meteorologica Sinica, 27, 455−475, https://doi.org/10.1007/s13351-013-0418-y.
Wang, Y. Q., 2009: How do outer spiral rainbands affect tropical cyclone structure and intensity? J Atmos. Sci., 66, 1250−1273, https://doi.org/10.1175/2008JAS2737.1.
Wang, H., and Y. Wang, 2014: A numerical study of Typhoon Megi (2010). Part I: Rapid intensification. Mon. Wea. Rev., 142, 29−48, https://doi.org/10.1175/MWR-D-13-00070.1.
Xu, J., and Y. Q. Wang, 2015: A statistical analysis on the dependence of tropical cyclone intensification rate on the storm intensity and size in the North Atlantic. Wea. Forecasting, 30, 692−701, https://doi.org/10.1175/WAF-D-14-00141.1.
Xu, J., and Y. Q. Wang, 2010: Sensitivity of tropical cyclone inner-core size and intensity to the radial distribution of surface entropy flux. J. Atmos. Sci., 67, 1831−1852, https://doi.org/10.1175/2010JAS3387.1.
Xu, J. and Y. Q. Wang, 2018: Dependence of tropical cyclone intensification rate on sea surface temperature, storm intensity, and size in the western North Pacific. Wea. Forecasting, 33, 523−537, https://doi.org/10.1175/WAF-D-17-0095.1.
Zagrodnik, J. P., and H. Y. Jiang, 2014: Rainfall, convection, and latent heating distributions in rapidly intensifying tropical cyclones. J. Atmos. Sci., 71, 2789−2809, https://doi.org/10.1175/JAS-D-13-0314.1.
Zhang, F. Q., and D. D. Tao, 2013: Effects of vertical wind shear on the predictability of tropical cyclones. J. Atmos. Sci., 70, 975−983, https://doi.org/10.1175/JAS-D-12-0133.1.
Zou, X., Z. Qin, and Y. Zheng, 2015: Improved tropical storm forecasts with GOES-13/15 imager radiance assimilation and asymmetric vortex initialization in HWRF. Mon. Wea. Rev., 143, 2485−2505, https://doi.org/10.1175/MWR-D-14-00223.1.