Carton, J. A., G. A. Chepurin, and L. G. Chen, 2018: SODA3: A new ocean climate reanalysis. J. Climate, 31, 6967−6983, https://doi.org/10.1175/JCLI-D-18-0149.1.
Chan, J. C. L., 1985: Tropical cyclone activity in the Northwest Pacific in relation to the El Niño/Southern Oscillation phenomenon. Mon. Wea. Rev., 113, 599−606, https://doi.org/10.1175/1520-0493(1985)113<0599:TCAITN>2.0.CO;2.
Chan, J. C. L., 2000: Tropical cyclone activity over the western North Pacific associated with El Niño and La Niña events. J. Climate, 13, 2960−2972, https://doi.org/10.1175/1520-0442(2000)013<2960:TCAOTW>2.0.CO;2.
Chan, J. C. L., and K. S. Liu, 2004: Global warming and western North Pacific typhoon activity from an observational perspective. J. Climate, 17, 4590−4602, https://doi.org/10.1175/3240.1.
Dunstone, N. J., D. M. Smith, B. B. B. Booth, L. Hermanson, and R. Eade, 2013: Anthropogenic aerosol forcing of Atlantic tropical storms. Nature Geoscience, 6, 534−539, https://doi.org/10.1038/ngeo1854.
Enfield, D. B., A. M. Mestas-Nuñez, and P. J. Trimble, 2001: The Atlantic Multidecadal Oscillation and its relation to rainfall and river flows in the continental U.S. Geophys. Res. Lett., 28, 2077−2080, https://doi.org/10.1029/2000GL012745.
Gill, A. E., 1980: Some simple solutions for heat-induced tropical circulation. Quart. J. Roy. Meter. Soc., 106(449), 447−462, https://doi.org/10.1002/qj.49710644905.
Goldenberg, S. B., and L. J. Shapiro, 1996: Physical mechanisms for the association of El Niño and West African rainfall with Atlantic major hurricane activity. J. Climate, 9, 1169−1187, https://doi.org/10.1175/1520-0442(1996)009<1169:PMFTAO>2.0.CO;2.
Goldenberg, S. B., C. W. Landsea, A. M. Mestas-Nuñez, and W. M. Gray, 2001: The recent increase in Atlantic hurricane activity: Causes and implications. Science, 293, 474−479, https://doi.org/10.1126/science.1060040.
Gray, W. M., 1979: Hurricanes: Their formation, structure and likely role in the tropical circulation. Meteorology over the Tropical Oceans, D. B. Shaw, Ed., Royal Meteorological Society.
Gray, W. M., 1984: Atlantic seasonal hurricane frequency. Part I: El Niño and 30 mb quasi-biennial oscillation influences. Mon. Wea. Rev., 112, 1649−1668, https://doi.org/10.1175/1520-0493(1984)112<1649:ASHFPI>2.0.CO;2.
Henley, B. J., J. Gergis, D. J. Karoly, S. Power, J. Kennedy, and C. K. Folland, 2015: A tripole index for the Interdecadal Pacific Oscillation. Climate Dyn., 45, 3077−3090, https://doi.org/10.1007/s00382-015-2525-1.
Hersbach, H., and Coauthors, 2020: The ERA5 global reanalysis. Quart. J. Roy. Meteor. Soc., 146, 1999−2049, https://doi.org/10.1002/qj.3803.
Holland, G. J., and P. J. Webster, 2007: Heightened tropical cyclone activity in the North Atlantic: natural variability or climate trend. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, 365, 2695−2716, https://doi.org/10.1098/rsta.2007.2083.
Huang, B. Y., and Coauthors, 2017: Extended reconstructed sea surface temperature, version 5 (ERSSTv5): Upgrades, validations, and intercomparisons. J. Climate, 30, 8179−8205, https://doi.org/10.1175/JCLI-D-16-0836.1.
Huo, L. W., P. W. Guo, S. N. Hameed, and D. C. Jin, 2015: The role of tropical Atlantic SST anomalies in modulating western North Pacific tropical cyclone genesis. Geophys. Res. Lett., 42, 2378−2384, https://doi.org/10.1002/2015GL063184.
Klotzbach, P. J., and W. M. Gray, 2008: Multidecadal variability in North Atlantic tropical cyclone activity. J. Climate, 21, 3929−3935, https://doi.org/10.1175/2008JCLI2162.1.
Knapp, K. R., M. C. Kruk, D. H. Levinson, H. J. Diamond, and C. J. Neumann, 2010: The international best track archive for climate stewardship (IBTrACS). Bull. Amer. Meteor. Soc., 91, 363−376, https://doi.org/10.1175/2009BAMS2755.1.
Knutson, T. R., and Coauthors, 2010: Tropical cyclones and climate change. Nature Geoscience, 3, 157−163, https://doi.org/10.1038/ngeo779.
Knutson, T., and Coauthors, 2020: Tropical cyclones and climate change assessment: Part II: Projected response to anthropogenic warming. Bull. Amer. Meteor. Soc., 101, E303−E322, https://doi.org/10.1175/BAMS-D-18-0194.1.
Kohyama, T., D. L. Hartmann, and D. S. Battisti, 2017: La Niña-like mean-state response to global warming and potential oceanic roles. J. Climate, 30, 4207−4225, https://doi.org/10.1175/JCLI-D-16-0441.1.
Kosaka, Y., and S.-P. Xie, 2013: Recent global-warming hiatus tied to equatorial Pacific surface cooling. Nature, 501, 403−407, https://doi.org/10.1038/nature12534.
Kossin, J. P., K. R. Knapp, D. J. Vimont, R. J. Murnane, and B. A. Harper, 2007: A globally consistent reanalysis of hurricane variability and trends. Geophys. Res. Lett., 34, L04815, https://doi.org/10.1029/2006GL028836.
Lander, M. A., 1994: An exploratory analysis of the relationship between tropical storm formation in the western North Pacific and ENSO. Mon. Wea. Rev., 122, 636−651, https://doi.org/10.1175/1520-0493(1994)122<0636:AEAOTR>2.0.CO;2.
Landsea, C., 2007: Counting Atlantic tropical cyclones back to 1900. Eos, Transactions American Geophysical Union, 88, 197−202, https://doi.org/10.1029/2007EO180001.
Leipper, D. F., 1967: Observed ocean conditions and Hurricane Hilda, 1964. J. Atmos. Sci., 24, 182−186, https://doi.org/10.1175/1520-0469(1967)024<0182:OOCAHH>2.0.CO;2.
Li, R. C. Y., and W. Zhou, 2018: Revisiting the intraseasonal, interannual and interdecadal variability of tropical cyclones in the western North Pacific. Atmos. Ocean. Sci. Lett., 11, 198−208, https://doi.org/10.1080/16742834.2018.1459460.
Li, W. H., L. F. Li, and Y. Deng, 2015: Impact of the interdecadal Pacific oscillation on tropical cyclone activity in the North Atlantic and eastern North Pacific. Scientific Reports, 5(1), 12358, https://doi.org/10.1038/srep12358.
Lian, T., D. K. Chen, J. Ying, P. Huang, and Y. M. Tang, 2018: Tropical Pacific trends under global warming: El Niño-like or La Niña-like. National Science Review, 5(6), 810−812, https://doi.org/10.1093/nsr/nwy134.
Liu, K. S., and J. C. L. Chan, 2013: Inactive period of western North Pacific tropical cyclone activity in 1998−2011. J. Climate, 26, 2614−2630, https://doi.org/10.1175/JCLI-D-12-00053.1.
Mann, M. E., and K. A. Emanuel, 2006: Atlantic hurricane trends linked to climate change. Eos, Transactions American Geophysical Union, 87(24), 233−241, https://doi.org/10.1029/2006EO24000.
Matsuno, T., 1966: Quasi-geostrophic motions in the equatorial area. J. Meteor. Soc. Japan, 44(1), 25−43, https://doi.org/10.2151/jmsj1965.44.1_25.
Murakami, H., T. L. Delworth, W. F. Cooke, M. Zhao, B. Q. Xiang, and P. C. Hsu, 2020: Detected climatic change in global distribution of tropical cyclones. Proceedings of the National Academy of Sciences of the United States of America, 117(20), 10 706−10 714,
Qin, M. H., A. G. Dai, and W. J. Hua, 2020: Aerosol-forced multidecadal variations across all ocean basins in models and observations since 1920. Science Advances, 6, eabb0425, https://doi.org/10.1126/sciadv.abb0425.
Rodionov, S. N., 2004: A sequential algorithm for testing climate regime shifts. Geophys. Res. Lett., 31, L09204, https://doi.org/10.1029/2004GL019448.
Santer, B. D., and Coauthors, 2006: Forced and unforced ocean temperature changes in Atlantic and Pacific tropical cyclogenesis regions. Proceedings of the National Academy of Sciences of the United States of America, 103, 13 905−13 910, https://doi:10.1073/pnas.0602861103.
Saunders, M. A., and A. S. Lea, 2008: Large contribution of sea surface warming to recent increase in Atlantic hurricane activity. Nature, 451, 557−560, https://doi.org/10.1038/nature06422.
Takahashi, C., M. Watanabe, and M. Mori, 2017: Significant aerosol influence on the recent decadal decrease in tropical cyclone activity over the western North Pacific. Geophys. Res. Lett., 44, 9496−9504, https://doi.org/10.1002/2017GL075369.
Trenberth, K. E., and D. J. Shea, 2006: Atlantic hurricanes and natural variability in 2005. Geophys. Res. Lett., 33, L12704, https://doi.org/10.1029/2006GL026894.
Vecchi, G. A., and T. R. Knutson, 2008: On estimates of historical North Atlantic tropical cyclone activity. J. Climate, 21, 3580−3600, https://doi.org/10.1175/2008JCLI2178.1.
Wada, A., and N. Usui, 2007: Importance of tropical cyclone heat potential for tropical cyclone intensity and intensification in the western North Pacific. Journal of Oceanography, 63, 427−447, https://doi.org/10.1007/s10872-007-0039-0.
Wada, A., and J. C. L. Chan, 2008: Relationship between typhoon activity and upper ocean heat content. Geophys. Res. Lett., 35, L17603, https://doi.org/10.1029/2008GL035129.
Wang, B., and J. C. L. Chan, 2002: How strong ENSO events affect tropical storm activity over the western North Pacific. J. Climate, 15, 1643−1658, https://doi.org/10.1175/1520-0442(2002)015<1643:HSEEAT>2.0.CO;2.
Wilks, D. S., 1995: Statistical Methods in the Atmospheric Sciences. Academic Press, 464 pp.
Zhang, W., G. A. Vecchi, H. Murakami, G. Villarini, T. L. Delworth, X. S. Yang, and L. W. Jia, 2018: Dominant role of Atlantic Multidecadal Oscillation in the recent decadal changes in western North Pacific tropical cyclone activity. Geophys. Res. Lett., 45, 354−362, https://doi.org/10.1002/2017GL076397.
Zhao, H. K., and C. Z. Wang, 2019: On the relationship between ENSO and tropical cyclones in the western North Pacific during the boreal summer. Climate Dyn., 52, 275−288, https://doi.org/10.1007/s00382-018-4136-0.
Zhao, J. W., R. F. Zhan, and Y. Q. Wang, 2018a: Global warming hiatus contributed to the increased occurrence of intense tropical cyclones in the coastal regions along East Asia. Scientific Reports, 8(1), 6023, https://doi.org/10.1038/s41598-018-24402-2.
Zhao, J. W., R. F. Zhan, Y. Q. Wang, and H. M. Xu, 2018b: Contribution of the Interdecadal Pacific oscillation to the recent abrupt decrease in tropical cyclone genesis frequency over the western North Pacific since 1998. J. Climate, 31(20), 8211−8224, https://doi.org/10.1175/JCLI-D-18-0202.1.
Zhao, J. W., R. F. Zhan, Y. Q. Wang, S.-P. Xie, and Q. Wu, 2020: Untangling impacts of global warming and interdecadal Pacific Oscillation on long-term variability of North Pacific tropical cyclone track density. Science Advances, 6, eaba6813, https://doi.org/10.1126/sciadv.aba6813.