Afargan, H., and Y. Kaspi, 2017: A midwinter minimum in North Atlantic storm track intensity in years of a strong jet. Geophys. Res. Lett., 44, 12511−12518, https://doi.org/10.1002/2017GL075136.
Blackmon, M. L., 1976: A climatological spectral study of the 500 mb geopotential height of the northern hemisphere. J. Atmos. Sci., 33(8), 1607−1623, https://doi.org/10.1175/1520-0469(1976)033<1607:ACSSOT>2.0.CO;2.
Blackmon, M. L., J. M. Wallace, N. Lau, and S. L. Mullen, 1977: An observational study of the northern hemisphere wintertime circulation. J. Atmos. Sci., 34(7), 1040−1053, https://doi.org/10.1175/1520-0469(1977)034<1040:AOSOTN>2.0.CO;2.
Blackmon, M. L., Y. H. Lee, J. M. Wallace, and H. H. Hsu, 1984: Time variation of 500 mb height fluctuations with long, intermediate and short time scales as deduced from lag-correlation statistics. J. Atmos. Sci., 41(6), 981−991, https://doi.org/10.1175/1520-0469(1984)041<0981:Tvomhf>2.0.Co;2.
Cai, M., S. Yang, H. M. Van den Dool, and V. E. Kousky, 2007: Dynamical implications of the orientation of atmospheric eddies: A local energetics perspective. Tellus A: Dynamic Meteorology and Oceanography, 59(1), 127−140, https://doi.org/10.1111/j.1600-0870.2006.00213.x.
Chang, E. K. M., 2001: GCM and observational diagnoses of the seasonal and interannual variations of the pacific storm track during the cool season. J. Atmos. Sci., 58(13), 1784−1800, https://doi.org/10.1175/1520-0469(2001)058<1784:Gaodot>2.0.Co;2.
Chang, E. K. M., 2003: Midwinter suppression of the pacific storm track activity as seen in aircraft observations. J. Atmos. Sci., 60(11), 1345−1358, https://doi.org/10.1175/1520-0469(2003)60<1345:Msotps>2.0.Co;2.
Chang, E. K. M., 2009: Are band-pass variance statistics useful measures of storm track activity. Re-examining storm track variability associated with the NAO using multiple storm track measures. Climate Dyn, 33(2), 277−296, https://doi.org/10.1007/s00382-009-0532-9.
Chang, E. K. M., and A. M. W. Yau, 2016: Northern Hemisphere winter storm track trends since 1959 derived from multiple reanalysis datasets. Climate Dyn., 47(5), 1435−1454, https://doi.org/10.1007/s00382-015-2911-8.
Chang, E. K. M., and Y. J. Guo, 2012: Is pacific storm-track activity correlated with the strength of upstream wave seeding. J. Climate, 25(17), 5768−5776, https://doi.org/10.1175/jcli-d-11-00555.1.
Chang, E. K. M., S. Lee, and K. L. Swanson, 2002: Storm track dynamics. J. Climate, 15(16), 2163−2183, https://doi.org/10.1175/1520-0442(2002)015<02163:STD>2.0.CO;2.
Charney, J. G., 1947: The dynamics of long waves in a baroclinic westerly current. J. Atmos. Sci., 4(5), 136−162, https://doi.org/10.1175/1520-0469(1947)004<0136:Tdolwi>2.0.Co;2.
Chen, H. S., L. Liu, and Y. J. Zhu, 2013: Possible linkage between winter extreme low temperature events over China and synoptic-scale transient wave activity. Science China Earth Sciences, 56(7), 1266−1280, https://doi.org/10.1007/s11430-012-4442-z.
Chen, Y. N., W. J. Zhu, and K. Yuan, 2013: An energy analysis of midwinter suppression of the North Pacific storm track. Transactions of Atmospheric Sciences, 36(6), 725−733, https://doi.org/10.13878/j.cnki.dqkxxb.2013.06.009. (in Chinese)
Cheung, H. N., W. Zhou, H. Y. Mok, M. C. Wu, and Y. P. Shao, 2013: Revisiting the climatology of atmospheric blocking in the Northern Hemisphere. Adv. Atmos. Sci., 30, 397−410, https://doi.org/10.1007/s00376-012-2006-y.
Christoph, M., U. Ulbrich, and P. Speth, 1997: Midwinter suppression of northern hemisphere storm track activity in the real atmosphere and in GCM experiments. J. Atmos. Sci., 54(12), 1589−1599, https://doi.org/10.1175/1520-0469(1997)054<1589:MSONHS>2.0.CO;2.
Deng, Y., and M. Mak, 2005: An idealized model study relevant to the dynamics of the midwinter minimum of the pacific storm track. J. Atmos. Sci., 62(4), 1209−1225, https://doi.org/10.1175/JAS3400.1.
Deng, Y., and M. Mak, 2006: Nature of the differences in the intraseasonal variability of the pacific and Atlantic storm tracks: A diagnostic study. J. Atmos. Sci., 63(10), 2602−2615, https://doi.org/10.1175/jas3749.1.
Dong, B. W., R. T. Sutton, T. Woollings, K. Hodges, 2013: Variability of the North Atlantic summer storm track: Mechanisms and impacts on European climate. Environmental Research Letters, 8(3), 034037, https://doi.org/10.1088/1748-9326/8/3/034037.
Duchon, C. E., 1979: Lanczos filtering in one and two dimensions. J. Appl. Meteorol. Climatol., 18(8), 1016−1022, https://doi.org/10.1175/1520-0450(1979)018<1016:Lfioat>2.0.Co;2.
Eady, E. T., 1949: Long waves and cyclone waves. Tellus, 1(3), 33−52, https://doi.org/10.3402/tellusa.v1i3.8507.
Fu, G., W. Bi, and J. T. Guo, 2009: Three-dimensional structure of storm track over the North Pacific. Acta Meteorologica Sinica, 67(2), 189−200, https://doi.org/10.11676/qxxb2009.019. (in Chinese)
Guo, Y. J., and E. K. M. Chang, 2008: Impacts of assimilation of satellite and rawinsonde observations on southern hemisphere baroclinic wave activity in the NCEP-NCAR reanalysis. J. Climate, 21(13), 3290−3309, https://doi.org/10.1175/2007JCLI2189.1.
Guo, Y. J., E. K. M. Chang, and S. S. Leroy, 2009: How strong are the Southern Hemisphere storm tracks. Geophys. Res. Lett., 36, L22806, https://doi.org/10.1029/2009gl040733.
Harnik, N., and E. K. M. Chang, 2004: The effects of variations in jet width on the growth of baroclinic waves: Implications for midwinter pacific storm track variability. J. Atmos. Sci., 61(1), 23−40, https://doi.org/10.1175/1520-0469(2004)061<0023:Teovij>2.0.Co;2.
Hoskins, B. J., and P. J. Valdes, 1990: On the existence of storm-tracks. J. Atmos. Sci., 47(15), 1854−1864, https://doi.org/10.1175/1520-0469(1990)047<1854:Oteost>2.0.Co;2.
Hoskins, B. J., and K. I. Hodges, 2002: New perspectives on the northern hemisphere winter storm tracks. J. Atmos. Sci., 59(6), 1041−1061, https://doi.org/10.1175/1520-0469(2002)059<1041:NPOTNH>2.0.CO;2.
Hoskins, B. J., and K. I. Hodges, 2019: The annual cycle of northern hemisphere storm tracks. Part I: Seasons. J. Climate, 32(6), 1743−1760, https://doi.org/10.1175/JCLI-D-17-0870.1.
Hwang, J., P. Martineau, S-W. Son, T. Miyasaka, H. Nakamura, 2020: The role of transient eddies in north pacific blocking formation and its seasonality. J. Atmos. Sci., 77(7), 2453−2470, https://doi.org/10.1175/JAS-D-20-0011.1.
James, I. N., 1987: Suppression of baroclinic instability in horizontally sheared flows. J. Atmos. Sci., 44(24), 3710−3720, https://doi.org/10.1175/1520-0469(1987)044<3710:SOBIIH>2.0.CO;2.
Kalnay, E., and Coauthors, 1996: The NCEP/NCAR 40-year reanalysis project. Bull. Amer. Meteor. Soc., 77, 437−472, https://doi.org/10.1175/1520-0477(1996)077<0437:TNYRP>2.0.CO;2.
Klein, W. H. 1958: The frequency of cyclones and anticyclones in relation to the mean circulation. J. Atmos. Sci., 15(1), 98−102, https://doi.org/10.1175/1520-0469(1958)015<0098:TFOCAA>2.0.CO;2.
Kuwano-Yoshida, A. 2014: Using the local deepening rate to indicate extratropical cyclone activity. SOLA, 10, 199−203, https://doi.org/10.2151/sola.2014-042.
Kuwano-Yoshida, A., and S. Minobe, 2017: Storm-track response to SST fronts in the northwestern pacific region in an AGCM. J. Climate, 30(3), 1081−1102, https://doi.org/10.1175/jcli-d-16-0331.1.
Lau, N. C. 1988: Variability of the observed midlatitude storm tracks in relation to low-frequency changes in the circulation pattern. J. Atmos. Sci., 45(19), 2718−2743, https://doi.org/10.1175/1520-0469(1988)045<2718:VOTOMS>2.0.CO;2.
Lau, N.-C., and E. O. Holopainen, 1984: Transient eddy forcing of the time-mean flow as identified by geopotential tendencies. J. Atmos. Sci., 41(3), 313−328, https://doi.org/10.1175/1520-0469(1984)041<0313:TEFOTT>2.0.CO;2.
Lee, S.-S., J.-Y. Lee, B. Wang, F.-F. Jin, W.-J. Lee, and K.-J. Ha, 2011: A comparison of climatological subseasonal variations in the wintertime storm track activity between the North Pacific and Atlantic: Local energetics and moisture effect. Climate Dyn., 37(11), 2455−2469, https://doi.org/10.1007/s00382-011-1027-z.
Lee, S.-S., J.-Y. Lee, B. Wang, K.-J. Ha, K.-Y. Heo, F.-F. Jin, D. M. Straus, and J. Shukla, 2012: Interdecadal changes in the storm track activity over the North Pacific and North Atlantic. Climate Dyn., 39(1), 313−327, https://doi.org/10.1007/s00382-011-1188-9.
Lee, S.-S., J.-Y. Lee, K.-J. Ha, B. Wang, A. Kitoh, Y. Kajikawa, and M. Abe, 2013: Role of the Tibetan plateau on the annual variation of mean atmospheric circulation and storm-track activity. J. Climate, 26(14), 5270−5286, https://doi.org/10.1175/jcli-d-12-00213.1.
Lee, Y.-Y., G. H.-Lim, and J.-S. Kug, 2010: Influence of the East Asian winter monsoon on the storm track activity over the North Pacific. J. Geophys. Res., 115, D09102, https://doi.org/10.1029/2009JD012813.
Li, C. Y., and W. Gu, 2010: An analyzing study of the anomalous activity of blocking high over the Ural mountains in January 2008. Chinese Journal of Atmospheric Sciences, 34(5), 865−874, https://doi.org/10.3878/j.issn.1006-9895.2010.05.02. (in Chinese)
Li, Y., W. J. Zhu, and J. S. Wei, 2010: Reappraisal and improvement of winter storm track indices in the North Pacific. Chinese Journal of Atmospheric Sciences, 34(5), 1001−1010, https://doi.org/10.3878/j.issn.1006-9895.2010.05.14. (in Chinese)
Liang, X. S. 2014: Unraveling the cause-effect relation between time series. Physical Review E, 90(5), 052150, https://doi.org/10.1103/PhysRevE.90.052150.
Liang, X. S., and R. Kleeman, 2005: Information transfer between dynamical system components. Physical Review Letters, 95(24), 244101, https://doi.org/10.1103/PhysRevLett.95.244101.
Lim, G. H., and J. M. Wallace, 1991: Structure and evolution of baroclinic waves as inferred from regression analysis. J. Atmos. Sci., 48(15), 1718−1732, https://doi.org/10.1175/1520-0469(1991)048<1718:Saeobw>2.0.Co;2.
Lindzen, R. S., and B. Farrell, 1980: A simple approximate result for the maximum growth rate of baroclinic instabilities. J. Atmos. Sci., 37(7), 1648−1654, https://doi.org/10.1175/1520-0469(1980)037<1648:ASARFT>2.0.CO;2.
Lorenz, E. N., 1955: Available potential energy and the maintenance of the general circulation. Tellus, 7(2), 157−167, https://doi.org/10.3402/tellusa.v7i2.8796.
Ma, X. H., P. Chang, R. Saravanan, R. Montuoro, H. Nakamura, D. X. Wu, X. P. Lin, and L. X. Wu, 2017: Importance of resolving kuroshio front and eddy influence in simulating the North Pacific Storm track. J. Climate, 30(5), 1861−1880, https://doi.org/10.1175/jcli-d-16-0154.1.
Machado, J. P., F. Justino, and C. D. Souza, 2021: Influence of El Niño-Southern Oscillation on baroclinic instability and storm tracks in the Southern Hemisphere. International Journal of Climatology, 41, E93−E109, https://doi.org/10.1002/joc.6651.
Nakamura, H., 1992: Midwinter suppression of baroclinic wave activity in the Pacific. J. Atmos. Sci., 49(17), 1629−1642, https://doi.org/10.1175/1520-0469(1992)049<1629:Msobwa>2.0.Co;2.
Nakamura, H., and T. Sampe, 2002: Trapping of synoptic-scale disturbances into the North-Pacific subtropical jet core in midwinter. Geophys. Res. Lett., 29(16), 8-1−8-4, https://doi.org/10.1029/2002GL015535.
Nakamura, H., T. Izumi, T. Sampe, 2002: Interannual and decadal modulations recently observed in the pacific storm track activity and East Asian winter monsoon. J. Climate, 15(14), 1855−1874, https://doi.org/10.1175/1520-0442(2002)015<1855:Iadmro>2.0.Co;2.
Nakamura, H., T. Sampe, A. Goto, W. Ohfuchi, and S.-P. Xie, 2008: On the importance of midlatitude oceanic frontal zones for the mean state and dominant variability in the tropospheric circulation. Geophys. Res. Lett., 35(15), L15709, https://doi.org/10.1029/2008GL034010.
Orlanski, I., 2005: A new look at the pacific storm track variability: Sensitivity to tropical SSTs and to upstream seeding. J. Atmos. Sci., 62(5), 1367−1390, https://doi.org/10.1175/jas3428.1.
Park, H-S., J. C. H. Chiang, and S-W. Son, 2010: The role of the central Asian mountains on the midwinter suppression of North Pacific storminess. J. Atmos. Sci., 67(11), 3706−3720, https://doi.org/10.1175/2010JAS3349.1.
Park, M., and S. Lee, 2020: A mechanism for the midwinter minimum in north pacific storm-track intensity from a global perspective. Geophys. Res. Lett., 47(5), e2019GL086052, https://doi.org/10.1029/2019gl086052.
Penny, S., G. H. Roe, and D. S. Battisti, 2010: The source of the midwinter suppression in storminess over the north pacific. J. Climate, 23(3), 634−648, https://doi.org/10.1175/2009JCLI2904.1.
Penny, S. M., D. S. Battisti, and G. H. Roe, 2013: Examining mechanisms of variability within the pacific storm track: Upstream seeding and jet-core strength. J. Climate, 26(14), 5242−5259, https://doi.org/10.1175/JCLI-D-12-00017.1.
Ren, X.-J., X.-Q. Yang, B. Han, and G.-Y. Xu, 2007: Storm track variations in the North Pacific in winter season and the coupled pattern with the midlatitude atmosphere-ocean system. Chinese Journal of Geophysics, 50(1), 92−100, https://doi.org/10.3321/j.issn:0001-5733.2007.01.012.
Ren, X. J., Y. C. Zhang, and Y. Xiang, 2008: Connections between wintertime jet stream variability, oceanic surface heating, and transient eddy activity in the North Pacific. J. Geophys. Res., 113(D21), D21119, https://doi.org/10.1029/2007jd009464.
Robinson, D. P., R. X. Black, and B. A. McDaniel, 2006: A Siberian precursor to midwinter intraseasonal variability in the North Pacific storm track. Geophys. Res. Lett., 33(15), L15811, https://doi.org/10.1029/2006GL026458.
Scherrer, S. C., M. Croci-Maspoli, C. Schwierz, and C. Appenzeller, 2006: Two-dimensional indices of atmospheric blocking and their statistical relationship with winter climate patterns in the Euro-Atlantic region. International Journal of Climatology, 26(2), 233−249, https://doi.org/10.1002/joc.1250.
Shaw, T. A., and Coauthors, 2016: Storm track processes and the opposing influences of climate change. Nature Geoscience, 9(9), 656−664, https://doi.org/10.1038/ngeo2783.
Small, R. J., R. A. Tomas, and F. O. Bryan, 2014: Storm track response to ocean fronts in a global high-resolution climate model. Climate Dyn., 43(3), 805−828, https://doi.org/10.1007/s00382-013-1980-9.
Takahashi, C., and R. Shirooka, 2014: Storm track activity over the North Pacific associated with the Madden-Julian Oscillation under ENSO conditions during boreal winter. J. Geophys. Res., 119, 10 663−10 683, https://doi.org/10.1002/2014JD021973.
Tibaldi, S., and F. Molteni, 1990: On the operational predictability of blocking. Tellus A: Dynamic Meteorology and Oceanography, 42(3), 343−365, https://doi.org/10.3402/tellusa.v42i3.11882.
Wallace, J. M., G. H. Lim, and M. L. Blackmon, 1988: Relationship between cyclone tracks, anticyclone tracks and baroclinic waveguides. J. Atmos. Sci., 45(3), 439−462, https://doi.org/10.1175/1520-0469(1988)045<0439:RBCTAT>2.0.CO;2.
Wang, H. J., and S. P. He, 2012: Weakening relationship between East Asian winter monsoon and ENSO after mid-1970s. Chinese Science Bulletin, 57(27), 3535−3540, https://doi.org/10.1007/s11434-012-5285-x.
Wang, L., and W. Chen, 2014: An intensity index for the East Asian winter monsoon. J. Climate, 27(6), 2361−2374, https://doi.org/10.1175/JCLI-D-13-00086.1.
Wang, L., W. Chen, W. Zhou, J. C. L. Chan, D. Barriopedro, and R. H. Huang, 2010: Effect of the climate shift around mid 1970s on the relationship between wintertime Ural blocking circulation and East Asian climate. International Journal of Climatology, 30(1), 153−158, https://doi.org/10.1002/joc.1876.
Xu, F., and X. S. Liang, 2017: On the generation and maintenance of the 2012/13 sudden stratospheric warming. J. Atmos. Sci., 74(10), 3209−3228, https://doi.org/10.1175/JAS-D-17-0002.1.
Yanai, M., S. Esbensen, and J.-H. Chu, 1973: Determination of bulk properties of tropical cloud clusters from large-scale heat and moisture budgets. J. Atmos. Sci., 30, 611−627, https://doi.org/10.1175/1520-0469(1973)030<0611:DOBPOT>2.0.CO;2.
Yang, M. H., Y. K. Tan, X. Li, X. Chen, C. Zhang, and P. L. Yu, 2020a: Influence of cumulus convection schemes on winter North Pacific storm tracks in the regional climate model RegCM4.5. International Journal of Climatology, 40, 1294−1305, https://doi.org/10.1002/joc.6273.
Yang, M. H., C. Y. Li, Y. K. Tan, X. Li, X. Chen, and P. L. Yu, 2020b: Further inquiry into the interaction between the winter North Pacific storm track and the East Asian trough. Climate Dyn., 55(3), 471−483, https://doi.org/10.1007/s00382-020-05279-2.
Yang, M. H., C. Y. Li, Y. K. Tan, X. Li, X. Chen, 2020c: Impacts of two types of El-Niño on the winter North Pacific storm track. Environmental Research Letters, 15(9), 094062, https://doi.org/10.1088/1748-9326/aba65f.
Yang, M. H., C. Y. Li, X. Chen, Y. K. Tan, X. Li, C. Zhang, and G. W. Chen, 2021: The climatology and the midwinter suppression of the cold-season north pacific storm track in CMIP6 models. J. Climate, 34, 6971−6988, https://doi.org/10.1175/jcli-d-20-0337.1.
Yuan, C., and H. M. Xu, 2016: Inter-annual and inter-decadal variability of the spring storm track over the North Pacific and its association with SST anomalies. Acta Meteorologica Sinica, 74(6), 860−875, https://doi.org/10.11676/qxxb2016.073. (in Chinese)
Zhang, Y. Q., and I. M. Held, 1999: A linear stochastic model of a GCM’s midlatitude storm tracks. J. Atmos. Sci., 56(19), 3416−3435, https://doi.org/10.1175/1520-0469(1999)056<3416:Alsmoa>2.0.Co;2.
Zhao, Y. B., and X. S. Liang, 2019: Causes and underlying dynamic processes of the mid-winter suppression in the North Pacific storm track. Science China Earth Sciences, 62(5), 872−890, https://doi.org/10.1007/s11430-018-9310-5.
Zhou, W., J. C. L. Chan, W. Chen, J. Ling, J. G. Pinto, and Y. P. Shao, 2009: Synoptic-scale controls of persistent low temperature and icy weather over Southern China in January 2008. Mon. Wea. Rev., 137(11), 3978−3991, https://doi.org/10.1175/2009mwr2952.1.
Zhu, W. J., and Y. Li, 2010: Inter-decadal variation characteristics of winter North Pacific storm tracks and its possible influencing mechanism. Acta Meteorologica Sinica, 68(4), 477−486, https://doi.org/10.11676/qxxb2010.046. (in Chinese)
Zhu, W. J., K. Yuan, and Y. N. Chen, 2013: Spatial and temporal variations in the eastern North Pacific storm track. Chinese Journal of Atmospheric Sciences, 37(1), 65−80, https://doi.org/10.3878/j.issn.1006-9895.2012.11245. (in Chinese)