Astling, E. G., J. Paegle, E. Miller, and C. J. O'Brien, 1985: Boundary layer control of nocturnal convection associated with a synoptic scale system. Mon. Wea. Rev., 113, 540−552, https://doi.org/10.1175/1520-0493(1985)113<0540:BLCONC>2.0.CO;2.
Blackadar, A. K., 1957: Boundary layer wind maxima and their significance for the growth of nocturnal inversions. Bull. Amer. Meteor. Soc., 38(5), 283−290, https://doi.org/10.1175/1520-0477-38.5.283.
Bonner, W. D., 1968: Climatology of the low level jet. Mon. Wea. Rev., 96, 833−850, https://doi.org/10.1175/1520-0493(1968)096<0833:COTLLJ>2.0.CO;2.
Chen, G. T. J., and C. C. Yu, 1988: Study of low-level jet and extremely heavy rainfall over northern Taiwan in the Mei-Yu season. Mon. Wea. Rev., 116, 884−891, https://doi.org/10.1175/1520-0493(1988)116<0884:SOLLJA>2.0.CO;2.
Chen, G. T. J., C.-C. Wang, and D. T.-W. Lin, 2005: Characteristics of low-level jets over northern Taiwan in Mei-Yu season and their relationship to heavy rain events. Mon. Wea. Rev., 133(1), 20−43, https://doi.org/10.1175/MWR-2813.1.
Chen, Y.-L., X. A. Chen, and Y.-X. Zhang, 1994: A diagnostic study of the low-level jet during TAMEX IOP 5. Mon. Wea. Rev., 122, 2257−2284, https://doi.org/10.1175/1520-0493(1994)122<2257:ADSOTL>2.0.CO;2.
Cook, K. H., and E. K. Vizy, 2010: Hydrodynamics of the Caribbean low-level jet and its relationship to precipitation. J. Climate, 23(6), 1477−1494, https://doi.org/10.1175/2009JCLI3210.1.
Du, Y., and G. X. Chen, 2018: Heavy rainfall associated with double low-level jets over Southern China. Part I: Ensemble-based analysis. Mon. Wea. Rev., 146, 3827−3844, https://doi.org/10.1175/MWR-D-18-0101.1.
Du, Y., and G. X. Chen, 2019a: Heavy rainfall associated with double low-level jets over Southern China. Part II: Convection initiation. Mon. Wea. Rev., 147, 543−565, https://doi.org/10.1175/MWR-D-18-0102.1.
Du, Y., and G. X. Chen, 2019b: Climatology of low-level jets and their impact on rainfall over southern China during the early-summer rainy season. J. Climate, 32(24), 8813−8833, https://doi.org/10.1175/JCLI-D-19-0306.1.
Du, Y., Q. H. Zhang, Y. Ying, and Y. M. Yang, 2012: Characteristics of low-level jets in Shanghai during the 2008-2009 warm seasons as inferred from wind profiler radar data. J. Meteor. Soc. Japan. Ser. II, 90(6), 891−903, https://doi.org/10.2151/jmsj.2012-603.
Fu, P. L., K. F. Zhu, K. Zhao, B. W. Zhou, and M. Xue, 2019: Role of the nocturnal low-level jet in the formation of the morning precipitation peak over the Dabie Mountains. Adv. Atmos. Sci., 36(1), 15−28, https://doi.org/10.1007/s00376-018-8095-5.
Hao, W. F., X. B. Su, Q. A. Wang, and Z. Kou, 2001: The observational features and the cause analysis of hilly boundary-layer-jet. Acta Meteorologica Sinica, 59(1), 120−128, https://doi.org/10.3321/j.issn:0577-6619.2001.01.014. (in Chinese with English abstract
Hoffmann L., G. Günther, D. Li, O. Stein, X. Wu, S. Griessbach, Y. Heng, P. Konopka, R. Müller, B. Vogel, and J. Germany, 2019: From ERA-Interim to ERA5: the considerable impact of ECMWF’s next-generation reanalysis on Lagrangian transport simulations. Atmospheric Chemistry and Physics, 19(5):3097−3124,
Jin, W. M., X. Y. Wang, Z. X. Hong, and D. S. Zhao, 1983: Intermittent features of the ultra-low-level jet during the appearance of nocturnal inversion. Scientia Atmospherica Sinica, 7(3), 296−302, https://doi.org/10.3878/j.issn.1006-9895.1983.03.07. (in Chinese with English abstract
Li, J., and Y. L. Chen, 1998: Barrier jets during TAMEX. Mon. Wea. Rev., 126(4), 959−971, https://doi.org/10.1175/1520-0493(1998)126<0959:BJDT>2.0.CO;2.
Li, J., and W. J. Shu, 2008: Observation and analysis of nocturnal low-level jet characteristics over Beijing in summer. Chinese Journal of Geophysics, 51(2), 360−368, https://doi.org/10.3321/j.issn:0001-5733.2008.02.008. (in Chinese with English abstract
Li, X. S., C. J. Zhu, L. Q. Liu, A. Y. Zheng, and M. Y. Zhou, 1982: A study on multi-level wind velocity profile in the planetary boundary layer. Scientia Atmospherica Sinica, 6(3), 308−314, https://doi.org/10.3878/j.issn.1006-9895.1982.03.10. (in Chinese with English abstract
Lin, P. L., Y. L. Chen, C. S. Chen, C. L. Liu, and C. Y. Chen, 2011: Numerical experiments investigating the orographic effects on a heavy rainfall event over the northwestern coast of Taiwan during TAMEX IOP 13. Meteorol. Atmos. Phys., 114(1−2), 35−50, https://doi.org/10.1007/s00703-011-0155-7.
Qian, J. H., W. K. Tao, and K.-M. Lau, 2004: Mechanisms for torrential rain associated with the Mei-Yu development during SCSMEX 1998. Mon. Wea. Rev., 132(1), 3−27, https://doi.org/10.1175/1520-0493(2004)132<0003:MFTRAW>2.0.CO;2.
Rajewski, D. A., and Coauthors, 2013: Crop Wind Energy Experiment (CWEX): Observations of surface-layer, boundary layer, and mesoscale interactions with a wind farm. Bull. Amer. Meteor. Soc., 94, 655−672, https://doi.org/10.1175/BAMS-D-11-00240.1.
Sun, J. S., 2005: A Study of the Basic Features and Mechanism of Boundary Layer Jet in Beijing Area. Chinese Journal of Atmospheric Sciences, 29(3), 445−451, http://dx.doi.org/10.3878/j.issn.1006-9895.2005.03.12 (in Chinese with English abstract)
Sun, S. Q., and G. Q. Zhai, 1980: The instability of the low level jet and its trigger function for the occurrence of heavy rain-storms. Scientia Atmospherica Sinica, 4(4), 327−337, https://doi.org/10.3878/j.issn.1006-9895.1980.04.05. (in Chinese with English abstract
Vanderwende, B. J., J. K. Lundquist, M. E. Rhodes, E. S. Takle, and S. L. Irvin, 2015: Observing and simulating the summertime low-level jet in central Iowa. Mon. Wea. Rev., 143(6), 2319−2336, https://doi.org/10.1175/MWR-D-14-00325.1.
Wan, R., Z. M. Zhou, C. G. Cui, W. J. Li, G. R. Xu, W. H. He, F. F. Wang, and D. Wang, 2011: Comparing wind profiler data with radiosonde data and analyzing. Torrential Rain and Disasters, 30, 130−136. (in Chinese with English abstract)
Wang, D. Q., and Y. C. Zhang, 2012: Diurnal variation of the south-westerly low-level jet over eastern China and its mechanism. Chinese Journal of Geophysics, 55(8), 2498−2507, https://doi.org/10.6038/j.issn.0001-5733.2012.08.002. (in Chinese with English abstract
Wang, X. K., X. F. Wang, C. G. Cui, and Z. M. Zhou, 2012: Analyzing the mesoscale convective system in a short-term severe precipitation process in Wuhan based on new sounding data. Torrential Rain and Disasters, 31(4), 321−327. (in Chinese with English abstract)
Wang, X. K., X. Q. Dong, Y. Deng, C. G. Cui, R. Wan, and W. J. Cui, 2019: Contrasting Pre-Mei-Yu and Mei-Yu extreme precipitation in the Yangtze River Valley: Influencing systems and precipitation mechanisms. Journal of Hydrometeorology, 20(9), 1961−1980, https://doi.org/10.1175/JHM-D-18-0240.1.
Wei, W., H. S. Zhang, and X. X. Ye, 2014: Comparison of low-level jets along the north coast of China in summer. J. Geophys. Res.: Atmos., 119, 9692−9706, https://doi.org/10.1002/2014JD021476.
Whiteman, C. D., X. D. Bian, and S. Y. Zhong, 1997: Low-level jet climatology from enhanced rawinsonde observations at a site in the southern Great Plains. J. Appl. Meteorol., 36, 1363−1376, https://doi.org/10.1175/1520-0450(1997)036<1363:LLJCFE>2.0.CO;2.
Xu, M. L., X. Duan, J. H. Sun, and X. D. Yang, 2004: Diagnostic study on the torrential rains coupling with the lower southwest jets in Yunnan. Journal of Yunnan University, 26(4), 320−324, https://doi.org/10.3321/j.issn:0258-7971.2004.04.011. (in Chinese with English abstract
Xue, M., X. Luo, K. F. Zhu, Z. Q. Sun, and J. F. Fei, 2018: The controlling role of boundary layer inertial oscillations in Mei-yu frontal precipitation and its diurnal cycles over China. J. Geophys. Res.: Atmos., 123(10), 5090−5115, https://doi.org/10.1029/2018JD028368.
Zhang, W. L., J. X. Dong, A. S. Wang, and L. Wang, 2007: Contrastive analyses of southwesterly low level jet and low level strong wind in China. Climatic and Environmental Research, 12(2), 199−210, https://doi.org/10.3969/j.issn.1006-9585.2007.02.009. (in Chinese with English abstract
Zhang, Y. H., M. Xue, K. F. Zhu, and B. W. Zhou, 2019: What is the main cause of diurnal variation and nocturnal peak of summer precipitation in Sichuan Basin, China? The key role of boundary layer low-level jet inertial oscillations J. Geophys. Res.: Atmos., 124(5), 2643−2664, https://doi.org/10.1029/2018JD029834.