Andrić, J., M. R. Kumjian, D. S. Zrnić, J. M. Straka, and V. M. Melnikov, 2013: Polarimetric signatures above the melting layer in winter storms: An observational and modeling study. J. Appl. Meteorol. Climatol., 52, 682−700, https://doi.org/10.1175/JAMC-D-12-028.1.
Atlas, D., R. C. Srivastava, and R. S. Sekhon, 1973: Doppler radar characteristics of precipitation at vertical incidence. Rev. Geophys., 11, 1−35, https://doi.org/10.1029/RG011i001p00001.
Auer, A. H. Jr., and D. L. Veal, 1970: The dimension of ice crystals in natural clouds. J. Atmos. Sci., 27, 919−926, https://doi.org/10.1175/1520-0469(1970)027<0919:TDOICI>2.0.CO;2.
Bechini, R., L. Baldini, and V. Chandrasekar, 2013: Polarimetric radar observations in the ice region of precipitating clouds at C-band and X-band radar frequencies. J. Appl. Meteorol. Climatol., 52, 1147−1169, https://doi.org/10.1175/JAMC-D-12-055.1.
Böhm, H. P., 1989: A general equation for the terminal fall speed of solid hydrometeors. J. Atmos. Sci., 46, 2419−2427, https://doi.org/10.1175/1520-0469(1989)046<2419:AGEFTT>2.0.CO;2.
Boodoo, S., D. Hudak, N. Donaldson, and M. Leduc, 2010: Application of dual-polarization radar melting-layer detection algorithm. J. Appl. Meteorol. Climatol., 49, 1779−1793, https://doi.org/10.1175/2010JAMC2421.1.
Brewster, K. A., and D. S. Zrnić, 1986: Comparison of eddy dissipation rates from spatial spectra of Doppler velocities and Doppler spectrum widths. J. Atmos. Oceanic Technol., 3, 440−452, https://doi.org/10.1175/1520-0426(1986)003<0440:COEDRF>2.0.CO;2.
Chandrasekar, V., R. Keränen, S. Lim, and D. Moisseev, 2013: Recent advances in classification of observations from dual polarization weather radars. Atmospheric Research, 119, 97−111, https://doi.org/10.1016/j.atmosres.2011.08.014.
Dolan, B., and S. A. Rutledge, 2009: A theory-based hydrometeor identification algorithm for X-band polarimetric radars. J. Atmos. Oceanic Technol., 26, 2071−2088, https://doi.org/10.1175/2009JTECHA1208.1.
Doviak, R. J., and D. S. Zrnić, 2006: Doppler Radar and Weather Observations. Courier Corporation.
Gent, R. W., N. P. Dart, and J. T. Cansdale, 2000: Aircraft icing. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, 358(1776), 2873−2911, https://doi.org/10.1098/rsta.2000.0689.
Giangrande, S. E., and A. V. Ryzhkov, 2008: Estimation of rainfall based on the results of polarimetric echo classification. J. Appl. Meteorol. Climatol., 47, 2445−2462, https://doi.org/10.1175/2008JAMC1753.1.
Giangrande, S. E., J. M. Krause, and A. V. Ryzhkov, 2008: Automatic designation of the melting layer with a polarimetric prototype of the WSR-88D radar. J. Appl. Meteorol. Climatol., 47, 1354−1364, https://doi.org/10.1175/2007JAMC1634.1.
Gourley, J. J., P. Tabary, and J. P. D. Chatelet, 2007: A fuzzy logic algorithm for the separation of precipitating from nonprecipitating echoes using polarimetric radar observations. J. Atmos. Oceanic Technol., 24, 1439−1451, https://doi.org/10.1175/JTECH2035.1.
Hannesdóttir, Á., M. Kelly, and N. Dimitrov, 2019: Extreme wind fluctuations: Joint statistics, extreme turbulence, and impact on wind turbine loads. Wind Energy Science, 4(2), 325−342, https://doi.org/10.5194/wes-4-325-2019.
Hashino, T., M. Chiruta, D. Polzin, A. Kubicek, and P. K. Wang, 2014: Numerical simulation of the flow fields around falling ice crystals with inclined orientation and the hydrodynamic torque. Atmospheric Research, 150, 79−96, https://doi.org/10.1016/j.atmosres.2014.07.003.
Hölzer, A., and M. Sommerfeld, 2008: New simple correlation formula for the drag coefficient of non-spherical particles. Powder Technology, 184, 361−365, https://doi.org/10.1016/j.powtec.2007.08.021.
Ishizaka, M., 1993: An accurate measurement of densities of snowflakes using 3-D microphotographs. Annals of Glaciology, 18, 92−96, https://doi.org/10.3189/S0260305500011319.
Istok, M. J., and R. J. Doviak, 1986: Analysis of the relation between Doppler spectral width and thunderstorm turbulence. J. Atmos. Sci., 43, 2199−2214, https://doi.org/10.1175/1520-0469(1986)043<2199:AOTRBD>2.0.CO;2.
Ji, W. S., and P. K. Wang, 1991: Numerical simulation of three-dimensional unsteady viscous flow past finite cylinders in an unbounded fluid at low intermediate Reynolds numbers. Theoretical and Computational Fluid Dynamics, 3, 43−59, https://doi.org/10.1007/BF00271515.
Kennedy, P. C., and S. A. Rutledge, 2011: S-band dual-polarization radar observations of winter storms. J. Appl. Meteorol. Climatol., 50, 844−858, https://doi.org/10.1175/2010JAMC2558.1.
Kikuchi, K., T. Kameda, K. Higuchi, and A. Yamashita, 2013: A global classification of snow crystals, ice crystals, and solid precipitation based on observations from middle latitudes to polar regions. Atmospheric Research, 132−133, 460−472,
Knupp, K. R., and W. R. Cotton, 1982: An intense, quasi-steady thunderstorm over mountainous terrain. Part II: Doppler radar observations of the storm morphological structure. J. Atmos. Sci., 39, 343−358, https://doi.org/10.1175/1520-0469(1982)039<0343:AIQSTO>2.0.CO;2.
Kunii, D., and O. Levenspiel, 1969: Entrapment and elutriation from fluidized beds. Journal of Chemical Engineering of Japan, 2, 84−88, https://doi.org/10.1252/jcej.2.84.
Kuroiwa, D., Y. Mizuno, and M. Takeuchi, 1967: Micromeritical properties of snow. Physics of Snow and Ice: Proceedings, 1, 751−772, http://hdl.handle.net/2115/20340.
Lee, J.-E., S.-H. Jung, H.-M. Park, S. Kwon, P.-L. Lin, and G. W. Lee, 2015: Classification of precipitation types using fall velocity-diameter relationships from 2D-video distrometer measurements. Adv. Atmos. Sci., 32, 1277−1290, https://doi.org/10.1007/s00376-015-4234-4.
Lee, J. T., 1977: Application of Doppler weather radar to turbulence measurements which affect aircraft. NSSL-1, FAA/RD-77/145.
List, R., and R. S. Schemenauer, 1971: Free-fall behavior of planar snow crystals, conical graupel and small hail. J. Atmos. Sci., 28, 110−115, https://doi.org/10.1175/1520-0469(1971)028<0110:FFBOPS>2.0.CO;2.
Mason, B. J., 1971: The Physics of Clouds. Clarendon Press.
Matrosov, S. Y., R. F. Reinking, R. A. Kropfli, and B. W. Bartram, 1996: Estimation of ice hydrometeor types and shapes from radar polarization measurements. J. Atmos. Oceanic Technol., 13, 85−96, https://doi.org/10.1175/1520-0426(1996)013<0085:EOIHTA>2.0.CO;2.
Matrosov, S. Y., R. F. Reinking, and I. V. Djalalova, 2005: Inferring fall attitudes of pristine dendritic crystals from polarimetric radar data. J. Atmos. Sci., 62, 241−250, https://doi.org/10.1175/JAS-3356.1.
Nakaya, U., and T. Terada Jr., 1935: Simultaneous observations of the mass, falling velocity and form of individual snow crystals. Journal of the Faculty of Science, Hokkaido Imperial University, 1, 191−200.
Nettesheim, J. J., and P. K. Wang, 2018: A numerical study on the aerodynamics of freely falling planar ice crystals. J. Atmos. Sci., 75, 2849−2865, https://doi.org/10.1175/JAS-D-18-0041.1.
Nygaard, B. E. K., J. E. Kristjánsson, and L. Makkonen, 2011: Prediction of in-cloud icing conditions at ground level using the WRF model. J. Appl. Meteorol. Climatol., 50, 2445−2459, https://doi.org/10.1175/JAMC-D-11-054.1.
O'Connor, A., and D. Kearney, 2018: Evaluating the effect of turbulence on aircraft during landing and take-off phases. International Journal of Aviation, Aeronautics, 5(4), 10, https://doi.org/10.15394/ijaaa.2018.1284.
Park, H. S., A. V. Ryzhkov, D. S. Zrnić, and K.-E. Kim, 2009: The hydrometeor classification algorithm for the polarimetric WSR-88D: Description and application to an MCS. Wea. Forecasting, 24, 730−748, https://doi.org/10.1175/2008WAF2222205.1.
Politovich, M. K., 2003: Aircraft icing. Encyclopedia of Atmospheric Sciences, J. R. Holton, Ed., Academic Press, 68−75,
Pruppacher, H. R., and J. D. Klett, 1997: Microphysics of Clouds and Precipitation. 2nd ed. Kluwer Academic Publishers, 954 pp.
Ralph, F. M., and Coauthors, 2005: Improving short-term (0–48 h) cool-season quantitative precipitation forecasting: Recommendations from a USWRP workshop. Bull. Amer. Meteor. Soc., 86, 1619−1632, https://doi.org/10.1175/BAMS-86-11-1619.
Ribaud, J.-F., O. Bousquet, and S. Coquillat, 2016: Relationships between total lightning activity, microphysics and kinematics during the 24 September 2012 HyMeX bow‐echo system. Quart. J. Roy. Meteor. Soc., 142, 298−309, https://doi.org/10.1002/qj.2756.
Ribaud, J.-F., L. A. T. Machado, and T. Biscaro, 2019: X-band dual-polarization radar-based hydrometeor classification for Brazilian tropical precipitation systems. Atmospheric Measurement Techniques, 12, 811−837, https://doi.org/10.5194/amt-12-811-2019.
Ryzhkov, A., P. F. Zhang, H. Reeves, M. Kumjian, T. Tschallener, S. Trömel, and C. Simmer, 2016: Quasi-vertical profiles—A new way to look at polarimetric radar data. J. Atmos. Oceanic Technol., 33, 551−562, https://doi.org/10.1175/JTECH-D-15-0020.1.
Ryzhkov, A. V., D. S. Zrnić, and B. A. Gordon, 1998: Polarimetric method for ice water content determination. J. Appl. Meteorol., 37, 125−134, https://doi.org/10.1175/1520-0450(1998)037<0125:PMFIWC>2.0.CO;2.
Ryzhkov, A. V., S. E. Giangrande, V. M. Melnikov, and T. J. Schuur, 2005a: Calibration issues of dual-polarization radar measurements. J. Atmos. Oceanic Technol., 22(8), 1138−1155, https://doi.org/10.1175/JTECH1772.1.
Ryzhkov, A. V., T. J. Schuur, D. W. Burgess, P. L. Heinselman, S. E. Giangrande, and D. S. Zrnić, 2005b: The joint polarization experiment: Polarimetric rainfall measurements and hydrometeor classification. Bull. Amer. Meteor. Soc., 86, 809−824, https://doi.org/10.1175/BAMS-86-6-809.
Sekhon, R. S., and R. C. Srivastava, 1970: Snow size spectra and radar reflectivity. J. Atmos. Sci., 27, 299−307, https://doi.org/10.1175/1520-0469(1970)027<0299:SSSARR>2.0.CO;2.
Thompson, E. J., S. A. Rutledge, B. Dolan, V. Chandrasekar, and B. L. Cheong, 2014: A dual-polarization radar hydrometeor classification algorithm for winter precipitation. J. Atmos. Oceanic Technol., 31, 1457−1481, https://doi.org/10.1175/JTECH-D-13-00119.1.
Vivekanandan, J., V. N. Bringi, M. Hagen, and P. Meischner, 1994: Polarimetric radar studies of atmospheric ice particles. IEEE Trans. Geosci. Remote Sens., 32, 1−10, https://doi.org/10.1109/36.285183.
Wang, P. K., 2002: Ice Microdynamics. Academic Press.
Wang, P. K., and S. M. Denzer, 1983: Mathematical description of the shape of plane hexagonal snow crystals. J. Atmos. Sci., 40, 1024−1028, https://doi.org/10.1175/1520-0469(1983)040<1024:MDOTSO>2.0.CO;2.
Wang, P. K., and W. S. Ji, 1997: Numerical simulation of three-dimensional unsteady flow past ice crystals. J. Atmos. Sci., 54, 2261−2274, https://doi.org/10.1175/1520-0469(1997)054<2261:NSOTDU>2.0.CO;2.
Wang, P. K., and W. S. Ji, 2000: Collision efficiencies of ice crystals at low–intermediate Reynolds numbers colliding with supercooled cloud droplets: A numerical study. J. Atmos. Sci., 57, 1001−1009, https://doi.org/10.1175/1520-0469(2000)057<1001:CEOICA>2.0.CO;2.
Williams, E. R., and Coauthors, 2011: Dual polarization radar winter storm studies supporting development of NEXRAD-based aviation hazard products. Preprints, AMS 35th Conf. on Radar Meteorology, Pittsburgh, PA, AMS, 26−30.
Williams, E. R., and Coauthors, 2013: Validation of NEXRAD radar differential reflectivity in snowstorms with airborne microphysical measurements: Evidence for hexagonal flat plate crystals. Preprints, 36th Conf. on Radar Meteorology, AMS.
Willmarth, W. W., N. E. Hawk, and R. L. Harvey, 1964: Steady and unsteady motions and wakes of freely falling disks. The Physics of Fluids, 7, 197−208, https://doi.org/10.1063/1.1711133.
Wolde, M., and G. Vali, 2001: Polarimetric signatures from ice crystals observed at 95 GHz in winter clouds. Part I: Dependence on crystal form. J. Atmos. Sci., 58, 828−841, https://doi.org/10.1175/1520-0469(2001)058<0828:PSFICO>2.0.CO;2.
Xia, D. D., L. M. Dai, L. Lin, H. F. Wang, and H. T. Hu, 2021: A field measurement based wind characteristics analysis of a Typhoon in near-ground boundary layer. Atmosphere, 12(7), 873, https://doi.org/10.3390/atmos12070873.
Zhang, P., P. W. Chan, R. Doviak, and M. Fang, 2009: Estimate of Eddy Dissipation Rate Using Spectrum Width Observed by the Hong Kong TDWR Radar. Preprints, 34th Conf. on Radar Meteorology, Williamsburg, VA.