Andrews, D. G., and M. E. McIntyre, 1978: Generalized Eliassen-Palm and Charney-Drazin theorems for waves on axismmetric mean flows in compressible atmospheres. J. Atmos. Sci., 35, 175−185, https://doi.org/10.1175/1520-0469(1978)035<0175:GEPACD>2.0.CO;2.
Benedict, J. J., S. Lee, and S. B. Feldstein, 2004: Synoptic view of the North Atlantic oscillation. J. Atmos. Sci., 61, 121−144, https://doi.org/10.1175/1520-0469(2004)061<0121:SVOTNA>2.0.CO;2.
Chen, X. D., D. H. Luo, S. B. Feldstein, and S. Lee, 2018: Impact of winter Ural blocking on Arctic Sea Ice: Short-time variability. J. Climate, 31, 2267−2282, https://doi.org/10.1175/JCLI-D-17-0194.1.
Cohen, J., K. Pfeiffer, and J. A. Francis, 2018a: Warm Arctic episodes linked with increased frequency of extreme winter weather in the United States. Nature Communication, 9, 869, https://doi.org/10.1038/s41467-018-02992-9.
Cohen, J., and Coauthors, 2014: Recent Arctic amplification and extreme mid-latitude weather. Nature Geoscience, 7, 627−637, https://doi.org/10.1038/ngeo2234.
Cohen, J., and Coauthors, 2018b: Arctic change and possible influence on mid-latitude climate and weather. US CLIVAR Report, 41pp.
Dai, A. G., and M. R. Song, 2020: Little influence of Arctic amplification on mid-latitude climate. Nature Climate Change, 10, 231−237, https://doi.org/10.1038/s41558-020-0694-3.
Ding, S. Y., B. Y. Wu, and W. Chen, 2021: Dominant characteristics of early autumn Arctic Sea Ice variability and its impact on Winter Eurasian Climate. J. Climate, 34, 1825−1846, https://doi.org/10.1175/JCLI-D-19-0834.1.
Ding, Y. H., Z. Y. Wang, Y. F. Song, and J. Zhang, 2008: The unprecedented freezing disaster in January 2008 in Southern China and its possible association with the global warming. Acta Meteorologica Sinica, 22, 538−558.
Edmon, H. J. J., B. J. Hoskins, and M. E. Mcintyre, 1980: Eliassen-Palm cross sections for the troposphere. J. Atmos. Sci., 37, 2600−2616, https://doi.org/10.1175/1520-0469(1980)037<2600:EPCSFT>2.0.CO;2.
Francis, J. A., S. J. Vavrus, and J. Cohen, 2017: Amplified Arctic warming and mid-latitude weather: New perspectives on emerging connections. Wiley Interdisciplinary Reviews: Climate Change, 8, e474, https://doi.org/10.1002/WCC.474.
Gao, Y. Q., and Coauthors, 2015: Arctic Sea Ice and Eurasian climate: A review. Adv. Atmos. Sci., 32, 92−114, https://doi.org/10.1007/s00376-014-0009-6.
Gong, T. T., and D. H. Luo, 2017: Ural blocking as an amplifier of the Arctic Sea Ice decline in winter. J. Climate, 30, 2639−2654, https://doi.org/10.1175/JCLI-D-16-0548.1.
Han, Z., and S. L. Li, 2018: Precursor role of winter sea-ice in the Labrador Sea for following-spring precipitation over southeastern North America and western Europe. Adv. Atmos. Sci., 35, 65−74, https://doi.org/10.1007/s00376-017-6291-3.
Herring, S. C., A. Hoell, M. P. Hoerling, J. P. Kossin, C. J. Schreck III, and P. A. Stott, 2016: Introduction to explaining extreme events of 2015 from a climate perspective. Bull. Amer. Meteor. Soc., 97, S1−S3, https://doi.org/10.1175/BAMS-D-16-0313.1.
Hersbach, H., and D. Dee, 2016: ERA5 reanalysis is in production. ECMWF Newsletter, No. 147, ECMWF, Reading, United Kingdom. Available from https://www.ecmwf.int/en/newsletter/147/news/era5-reanalysis-production.
Hui, G., 2009: China's snow disaster in 2008, who is the principal player. . International Journal of Climatology, 29, 2191−2196, https://doi.org/10.1002/joc.1859.
Iwasaki, T., T. Shoji, Y. Kanno, M. Sawada, M. Ujiie, and K. Takaya, 2014: Isentropic analysis of polar cold airmass streams in the Northern Hemispheric winter. J. Atmos. Sci., 71, 2230−2243, https://doi.org/10.1175/JAS-D-13-058.1.
Kodera, K., H. Mukougawa, and A. Fujii, 2013: Influence of the vertical and zonal propagation of stratospheric planetary waves on tropospheric blockings. J. Geophys. Res.: Atmos., 118, 8333−8345, https://doi.org/10.1002/jgrd.50650.
Li, F., and H. J. Wang, 2012: Autumn sea ice cover, winter Northern Hemisphere annular mode, and winter precipitation in Eurasia. J. Climate, 26, 3968−3981, https://doi.org/10.1175/JCLI-D-12-00380.1.
Li, H. X., H. P. Chen, H. J. Wang, J. Q. Sun, and J. H. Ma, 2018: Can Barents Sea ice decline in spring enhance summer hot drought events over northeastern China. . J. Climate, 31, 4705−4725, https://doi.org/10.1175/JCLI-D-17-0429.1.
Li, M. Y., Y. Yao, I. Simmonds, D. H. Luo, L. H. Zhong, and X. D. Chen, 2020: Collaborative impact of the NAO and atmospheric blocking on European heatwaves, with a focus on the hot summer of 2018. Environmental Research Letters, 15, 114003, https://doi.org/10.1088/1748-9326/aba6ad.
Lü, Z. Z., S. P. He, F. Li, and H. J. Wang, 2019: Impacts of the autumn Arctic Sea Ice on the intraseasonal reversal of the winter Siberian high. Adv. Atmos. Sci., 36, 173−188, https://doi.org/10.1007/s00376-017-8089-8.
Lü, Z. Z., F. Li, Y. J. Orsolini, Y. Q. Gao, and S. P. He, 2020: Understanding of European cold extremes, sudden stratospheric warming, and Siberian snow accumulation in the winter of 2017/18. J. Climate, 33, 527−545, https://doi.org/10.1175/JCLI-D-18-0861.1.
Luo, B. H., D. H. Luo, L. X. Wu, L. H. Zhong, and I. Simmonds, 2017: Atmospheric circulation patterns which promote winter Arctic sea ice decline. Environmental Research Letters, 12, 054017, https://doi.org/10.1088/1748-9326/AA69D0.
Luo, D. H., 2005: A barotropic envelope Rossby soliton model for block-eddy interaction. Part I: Effect of topography. J. Atmos. Sci., 62, 5−21, https://doi.org/10.1175/1186.1.
Luo, D. H., and J. Cha, 2012: The North Atlantic oscillation and the North Atlantic jet variability: Precursors to NAO regimes and transitions. J. Atmos. Sci., 69, 3763−3787, https://doi.org/10.1175/JAS-D-12-098.1.
Luo, D. H., Y. Yao, and S. B. Feldstein, 2014: Regime transition of the North Atlantic oscillation and the extreme cold event over Europe in January-February 2012. Mon. Wea. Rev., 142, 4735−4757, https://doi.org/10.1175/MWR-D-13-00234.1.
Luo, D. H., Y. Yao, A. G. Dai, and S. B. Feldstein, 2015: The positive North Atlantic oscillation with downstream blocking and middle east snowstorms: The large-scale environment. J. Climate, 28, 6398−6418, https://doi.org/10.1175/JCLI-D-15-0184.1.
Luo, D. H., Y. Q. Xiao, Y. Yao, A. G. Dai, I. Simmonds, and C. L. E. Franzke, 2016: Impact of Ural blocking on winter warm Arctic-cold Eurasian anomalies. Part I: Blocking-induced amplification. J. Climate, 29, 3925−3947, https://doi.org/10.1175/JCLI-D-15-0611.1.
Ma, S. M., and C. W. Zhu, 2019: Extreme Cold Wave over East Asia in January 2016: A possible response to the larger internal atmospheric variability induced by Arctic warming. J. Climate, 32, 1203−1216, https://doi.org/10.1175/JCLI-D-18-0234.1.
Martineau, P., G. Chen, and D. A. Burrows, 2017: Wave events: Climatology, trends, and relationship to Northern Hemisphere winter blocking and weather extremes. J. Climate, 30, 5675−5697, https://doi.org/10.1175/JCLI-D-16-0692.1.
Overland, J. E., and Coauthors, 2016: Nonlinear response of mid-latitude weather to the changing Arctic. Nature Climate Change, 6, 992−999, https://doi.org/10.1038/NCLIMATE3121.
Shen, X. C., L. Wang, and S. Osprey, 2020: The Southern Hemisphere sudden stratospheric warming of September 2019. Science Bulletin, 65(21), 1800−1802, https://doi.org/10.1016/j.scib.2020.06.028.
Tibaldi, S., and F. Molteni, 1990: On the operational predictability of blocking. Tellus A, 42, 343−365, https://doi.org/10.3402/TELLUSA.V42I3.11882.
Tyrlis, E., E. Manzini, J. Bader, J. Ukita, H. Nakamura, and D. Matei, 2019: Ural blocking driving extreme Arctic Sea Ice loss, cold eurasia, and stratospheric vortex weakening in autumn and early winter 2016−2017. J. Geophys. Res.: Atmos., 124, 11313−11329, https://doi.org/10.1029/2019JD031085.
Whan, K., F. Zwiers, and J. Sillmann, 2016: The influence of atmospheric blocking on extreme winter minimum temperatures in North America. J. Climate, 29, 4361−4381, https://doi.org/10.1175/JCLI-D-15-0493.1.
Wu, B. Y., 2017: Winter atmospheric circulation anomaly associated with recent Arctic Winter warm anomalies. J. Climate, 30, 8469−8479, https://doi.org/10.1175/JCLI-D-17-0175.1.
Wu, B. Y., J. Z. Su, and R. D'Arrigo, 2015: Patterns of Asian winter climate variability and links to Arctic Sea Ice. J. Climate, 28, 6841−6858, https://doi.org/10.1175/JCLI-D-14-00274.1.
Wu, B. Y., K. Yang, and J. A. Francis, 2017: A cold event in Asia during January-February 2012 and its possible association with Arctic Sea Ice loss. J. Climate, 30, 7971−7990, https://doi.org/10.1175/JCLI-D-16-0115.1.
Wu, Z. W., J. P. Li, Z. H. Jiang, and J. H. He, 2011: Predictable climate dynamics of abnormal East Asian winter monsoon: Once-in-a-century snowstorms in 2007/2008 winter. Climate Dyn., 37, 1661−1669, https://doi.org/10.1007/s00382-010-0938-4.
Yamaguchi, J., Y. Kanno, G. X. Chen, and T. Iwasaki, 2019: Cold air mass analysis of the record-breaking cold surge event over East Asia in January 2016. J. Meteor. Soc. Japan. Ser. II, 97, 275−293, https://doi.org/10.2151/jmsj.2019-015.
Yao, Y., and D. H. Luo, 2014: Relationship between zonal position of the North Atlantic oscillation and Euro-Atlantic blocking events and its possible effect on the weather over Europe. Science China Earth Sciences, 57, 2628−2636, https://doi.org/10.1007/s11430-014-4949-6.
Yao, Y., and D. H. Luo, 2018: An asymmetric spatiotemporal connection between the Euro-Atlantic blocking within the NAO life cycle and European climates. Adv. Atmos. Sci., 35, 796−812, https://doi.org/10.1007/s00376-017-7128-9.
Yao, Y., D. H. Luo, A. G. Dai, and S. B. Feldstein, 2016: The positive North Atlantic oscillation with downstream blocking and middle east snowstorms: Impacts of the North Atlantic jet. J. Climate, 29, 1853−1876, https://doi.org/10.1175/JCLI-D-15-0350.1.
Yao, Y., D. H. Luo, A. G. Dai, and I. Simmonds, 2017: Increased Quasi stationarity and persistence of winter Ural blocking and Eurasian extreme cold events in response to Arctic warming. Part I: Insights from observational analyses. J. Climate, 30, 3549−3568, https://doi.org/10.1175/JCLI-D-16-0261.1.
Zhang, R. N., C. H. Sun, R. H. Zhang, W. J. Li, and J. Q. Zuo, 2019: Role of Eurasian snow cover in linking winter-spring Eurasian coldness to the autumn Arctic Sea Ice retreat. J. Geophys. Res.: Atmos., 124, 9205−9221, https://doi.org/10.1029/2019JD030339.
Zheng, F., and Coauthors, 2021: The 2020/21 extremely cold winter in China influenced by the synergistic effect of La Niña and warm Arctic. Adv. Atmos. Sci., https://doi.org/10.1007/s00376-021-1033-y. (in press)