Adler, R. F., and Coauthors, 2003: The Version-2 Global Precipitation Climatology Project (GPCP) monthly precipitation analysis (1979-Present). Journal of Hydrometeorology, 4, 1147−1167, https://doi.org/10.1175/1525-7541(2003)004<1147:TVGPCP>2.0.CO;2.
Bett, P. E., and Coauthors, 2018: Seasonal forecasts of the summer 2016 Yangtze River basin rainfall. Adv. Atmos. Sci., 35, 918−926, https://doi.org/10.1007/s00376-018-7210-y.
Bett, P. E., and Coauthors, 2020: Seasonal rainfall forecasts for the Yangtze River basin of China in summer 2019 from an improved climate service. Journal of Meteorological Research, 34, 904−916, https://doi.org/10.1007/s13351-020-0049-z.
Bett, P. E., G. M. Martin, N. Dunstone, A. A. Scaife, H. E. Thornton, and C. F. Li, 2021: Seasonal rainfall forecasts for the Yangtze River basin in the extreme summer of 2020. Adv. Atmos. Sci., doi: https://doi.org/10.1007/s00376-021-1087-x.
Camp, J., and Coauthors, 2019: The western Pacific subtropical high and tropical cyclone landfall: Seasonal forecasts using the Met Office GloSea5 system. Quart. J. Roy. Meteor. Soc., 145, 105−116, https://doi.org/10.1002/qj.3407.
Chen, G., P. F. Zhang, and J. Lu, 2020: Sensitivity of the latitude of the westerly jet stream to climate forcing. Geophys. Res. Lett., 47, e2019GL086563, https://doi.org/10.1029/2019GL086563.
Chowdary, J. S., S.-P. Xie, J.-J. Luo, J. Hafner, S. Behera, Y. Masumoto, and T. Yamagata, 2011: Predictability of Northwest Pacific climate during summer and the role of the tropical Indian Ocean. Climate Dyn., 36, 607−621, https://doi.org/10.1007/s00382-009-0686-5.
Golding, N., C. Hewitt, P. Q. Zhang, P. Bett, X. Y. Fang, H. Z. Hu, and S. Nobert, 2017: Improving user engagement and uptake of climate services in China. Climate Services, 5, 39−45, https://doi.org/10.1016/j.cliser.2017.03.004.
Hardiman, S. C., and Coauthors, 2018: The asymmetric response of Yangtze river basin summer rainfall to El Niño/La Niña. Environmental Research Letters, 13, 024015, https://doi.org/10.1088/1748-9326/aaa172.
Hersbach, H., and Coauthors, 2020: The ERA5 global reanalysis. Quart. J. Roy. Meteor. Soc., 146, 1999−2049, https://doi.org/10.1002/qj.3803.
Hu, K. M., G. Huang, X.-T. Zheng, S.-P. Xie, X. Qu, Y. Du, and L. Liu, 2014: Interdecadal variations in ENSO influences on Northwest Pacific-East Asian early summertime climate simulated in CMIP5 models. J. Climate, 27, 5982−5998, https://doi.org/10.1175/JCLI-D-13-00268.1.
Huang, B. Y., and Coauthors, 2017: Extended reconstructed sea surface temperature, version 5(ERSSTv5): Upgrades, validations, and intercomparisons. J. Climate, 30, 8179−8205, https://doi.org/10.1175/jcli-d-16-0836.1.
Huang, R. H., and Y. F. Wu, 1989: The influence of ENSO on the summer climate change in China and its mechanism. Adv. Atmos. Sci., 6, 21−32, https://doi.org/10.1007/bf02656915.
Huang, R. H., and F. Y. Sun, 1992: Impacts of the tropical western pacific on the East Asian summer monsoon. J. Meteor. Soc. Japan, 70, 243−256, https://doi.org/10.2151/jmsj1965.70.1B_243.
Kosaka, Y., J. S. Chowdary, S.-P. Xie, Y.-M. Min, and J.-Y. Lee, 2012: Limitations of seasonal predictability for summer climate over East Asia and the Northwestern Pacific. J. Climate, 25, 7574−7589, https://doi.org/10.1175/JCLI-D-12-00009.1.
Kosaka, Y., S.-P. Xie, N.-C. Lau, and G. A. Vecchi, 2013: Origin of seasonal predictability for summer climate over the Northwestern Pacific. Proceedings of the National Academy of Sciences of the United States of America, 110, 7574−7579, https://doi.org/10.1073/pnas.1215582110.
Kuang, X.-Y., and Y.-C. Zhang, 2006: Impact of the position abnormalities of East Asian subtropical westerly jet on summer precipitation in middle-lower reaches of Yangtze River. Plateau Meteorology, 25, 382−389, https://doi.org/10.3321/j.issn:1000-0534.2006.03.004. (in Chinese with English abstract
Li, C. F., and Z. D. Lin, 2015: Predictability of the summer East Asian upper-tropospheric westerly jet in ENSEMBLES multi-model forecasts. Adv. Atmos. Sci., 32, 1669−1682, https://doi.org/10.1007/s00376-015-5057-z.
Li, C. F., R. Y. Lu, and B. W. Dong, 2012: Predictability of the western North Pacific summer climate demonstrated by the coupled models of ENSEMBLES. Climate Dyn., 39, 329−346, https://doi.org/10.1007/s00382-011-1274-z.
Li, C. F., and Coauthors, 2016: Skillful seasonal prediction of Yangtze river valley summer rainfall. Environmental Research Letters, 11, 094002, https://doi.org/10.1088/1748-9326/11/9/094002.
Li, C. F., W. Chen, X. W. Hong, and R. Y. Lu, 2017: Why was the strengthening of rainfall in summer over the Yangtze River valley in 2016 less pronounced than that in 1998 under similar preceding El Niño events? —Role of midlatitude circulation in August. Adv. Atmos. Sci., 34, 1290−1300, https://doi.org/10.1007/s00376-017-7003-8.
Li, C. F., R. Y. Lu, and N. Dunstone, 2021: Prediction of the western North Pacific subtropical high in summer without strong ENSO forcing. Journal of Meteorological Research, 35, 101−112, https://doi.org/10.1007/s13351-021-0113-3.
Li, X. Y., and R. Y. Lu, 2017: Extratropical factors affecting the variability in summer precipitation over the Yangtze River basin, China. J. Climate, 30, 8357−8374, https://doi.org/10.1175/jcli-d-16-0282.1.
Li, X. Y., and R. Y. Lu, 2018: Subseasonal change in the seesaw pattern of precipitation between the Yangtze River basin and the tropical western North Pacific during summer. Adv. Atmos. Sci., 35, 1231−1242, https://doi.org/10.1007/s00376-018-7304-6.
Lin, X. Z., C. F. Li, Z. D. Lin, and R. Y. Lu, 2018: Close relationship between the East Asian westerly jet and Russian far East surface air temperature in summer. Atmos. Ocean. Sci. Lett., 11, 282−286, https://doi.org/10.1080/16742834.2018.1467726.
Lin, Z. D., and R. Y. Lu, 2005: Interannual meridional displacement of the East Asian upper-tropospheric jet stream in summer. Adv. Atmos. Sci., 22, 199, https://doi.org/10.1007/BF02918509.
Liu, B. Q., Y. H. Yan, C. W. Zhu, S. M. Ma, and J. Y. Li, 2020: Record-breaking Meiyu rainfall around the Yangtze River in 2020 regulated by the subseasonal phase transition of the North Atlantic Oscillation. Geophys. Res. Lett., 47, e2020GL090342, https://doi.org/10.1029/2020GL090342.
Liu, Y. Y., and Y. H. Ding, 2020: Characteristics and possible causes for the Extreme Meiyu in 2020. Meteorological Monthly, 46, 1393−1404, https://doi.org/10.7519/j.issn.1000-0526.2020.11.001. (in Chinese with English abstract
Lu, R. Y., 2004: Associations among the components of the East Asian summer monsoon system in the meridional direction. J. Meteor. Soc. Japan, 82, 155−165, https://doi.org/10.2151/jmsj.82.155.
Lu, R. Y., and B. W. Dong, 2001: Westward extension of North Pacific subtropical high in summer. J. Meteor. Soc. Japan, 79, 1229−1241, https://doi.org/10.2151/jmsj.79.1229.
Lu, R. Y., Y. Li, and B. W. Dong, 2006: External and internal summer atmospheric variability in the western North Pacific and East Asia. J. Meteor. Soc. Japan, 84, 447−462, https://doi.org/10.2151/jmsj.84.447.
MacLachlan, C., and Coauthors, 2015: Global seasonal forecast system version 5(GloSea5): A high-resolution seasonal forecast system. Quart. J. Roy. Meteor. Soc., 141, 1072−1084, https://doi.org/10.1002/qj.2396.
Martin, G. M., N. J. Dunstone, A. A. Scaife, and P. E. Bett, 2020: Predicting June mean rainfall in the middle/lower Yangtze River basin. Adv. Atmos. Sci., 37, 29−41, https://doi.org/10.1007/s00376-019-9051-8.
Qu, X., and G. Huang, 2012: Impacts of tropical Indian Ocean SST on the meridional displacement of East Asian jet in boreal summer. International Journal of Climatology, 32, 2073−2080, https://doi.org/10.1002/joc.2378.
Scaife, A. A., and Coauthors, 2019: Tropical rainfall predictions from multiple seasonal forecast systems. Internaltional Journal of Climatology, 39, 974−988, https://doi.org/10.1002/joc.5855.
Takaya, Y., I. Ishikawa, C. Kobayashi, H. Endo, and T. Ose, 2020: Enhanced Meiyu-Baiu rainfall in early summer 2020: Aftermath of the 2019 super IOD event. Geophys. Res. Lett., 47, e2020GL090671, https://doi.org/10.1029/2020GL090671.
Tao, S. Y., and L. X. Chen, 1987: A review of recent research on the East Asian summer monsoon in China. Monsoon Meteorology, C.-P. Chang and T. N. Krishnamuri, Eds., Oxford University Press, 60−92.
Wang, B., and Z. Fan, 1999: Choice of South Asian summer monsoon indices. Bull. Amer. Meteor. Soc., 80, 629−638, https://doi.org/10.1175/1520-0477(1999)080<0629:COSASM>2.0.CO;2.
Wang, B., and Q. Zhang, 2002: Pacific-East Asian teleconnection. Part II: How the philippine sea anomalous anticyclone is established during El Niño development. J. Climate, 15, 3252−3265, https://doi.org/10.1175/1520-0442(2002)015<3252:PEATPI>2.0.CO;2.
Wang, B., R. G. Wu, and X. H. Fu, 2000: Pacific-East Asian teleconnection: How does ENSO affect East Asian climate? J. Climate, 13, 1517−1536, https://doi.org/10.1175/1520-0442(2000)013<1517:PEATHD>2.0.CO;2.
Wang, B., Q. H. Ding, X. H. Fu, I.-S. Kang, K. Jin, J. Shukla, and F. Doblas-Reyes, 2005: Fundamental challenge in simulation and prediction of summer monsoon rainfall. Geophys. Res. Lett., 32, L15711, https://doi.org/10.1029/2005GL022734.
Wang, S. X., and H. C. Zuo, 2016: Effect of the East Asian westerly jet’s intensity on summer rainfall in the Yangtze River valley and its mechanism. J. Climate, 29, 2395−2406, https://doi.org/10.1175/jcli-d-15-0259.1.
Wang, S. X., H. C. Zuo, S. M. Zhao, J. K. Zhang, and S. Lu, 2018a: How East Asian westerly jet’s meridional position affects the summer rainfall in Yangtze-Huaihe River Valley? Climate Dyn., 51, 4109−4121, https://doi.org/10.1007/s00382-017-3591-3.
Wang, Z. Q., S. Yang, N.-C. Lau, and A. M. Duan, 2018b: Teleconnection between summer NAO and East China rainfall variations: A bridge effect of the Tibetan Plateau. J. Climate, 31, 6433−6444, https://doi.org/10.1175/jcli-d-17-0413.1.
Wei, K., C. J. Ouyang, H. T. Duan, Y. L. Li, M. X. Chen, J. Ma, H. C. An, and S. Zhou, 2020: Reflections on the catastrophic 2020 Yangtze River basin flooding in southern China. The Innovation, 1, 100038, https://doi.org/10.1016/j.xinn.2020.100038.
Williams, K. D., and Coauthors, 2015: The met office global coupled model 2.0(GC2) configuration. Geoscientific Model Development, 8, 1509−1524, https://doi.org/10.5194/gmd-8-1509-2015.
Wu, B., T. J. Zhou, and T. Li, 2009: Contrast of rainfall-SST relationships in the western North Pacific between the ENSO-Developing and ENSO-Decaying summers. J. Climate, 22, 4398−4405, https://doi.org/10.1175/2009JCLI2648.1.
Xie, S.-P., K. M. Hu, J. Hafner, H. Tokinaga, Y. Du, G. Huang, and T. Sampe, 2009: Indian ocean capacitor effect on Indo-Western Pacific climate during the summer following El Niño. J. Climate, 22, 730−747, https://doi.org/10.1175/2008JCLI2544.1.
Xie, S.-P., Y. Kosaka, Y. Du, K. M. Hu, J. S. Chowdary, and G. Huang, 2016: Indo-western Pacific ocean capacitor and coherent climate anomalies in post-ENSO summer: A review. Adv. Atmos. Sci., 33, 411−432, https://doi.org/10.1007/s00376-015-5192-6.
Xuan, S. L., Q. Y. Zhang, S. Q. Sun, and C. L. Shi, 2018: Contrast in the East Asian subtropical westerly jet and its association with precipitation in China between early summer and midsummer. Meteorological Applications, 25, 119−127, https://doi.org/10.1002/met.1675.
Zhang, F. H., T. Chen, F. Zhang, X. L. Shen, and Y. Lan, 2020: Extreme features of severe precipitation in Meiyu period over the middle and lower reaches of Yangtze River Basin in June-July 2020. Meteorological Monthly, 46, 1405−1414, https://doi.org/10.7519/j.issn.1000-0526.2020.11.002. (in Chinese with English abstract
Zhang, R. H., A. Sumi, and M. Kimoto, 1999: A diagnostic study of the impact of El Niño on the precipitation in China. Adv. Atmos. Sci., 16, 229−241, https://doi.org/10.1007/BF02973084.
Zhang, W. J., Z. C. Huang, F. Jiang, M. F. Stuecker, G. S. Chen, and F.-F. Jin, 2021: Exceptionally persistent Madden-Julian oscillation activity contributes to the extreme 2020 East Asian summer monsoon rainfall. Geophys. Res. Lett., 48, e2020GL091588, https://doi.org/10.1029/2020GL091588.
Zhou, T.-J., and R.-C. Yu, 2005: Atmospheric water vapor transport associated with typical anomalous summer rainfall patterns in China. J. Geophys. Res., 110, D08104, https://doi.org/10.1029/2004JD005413.
Zhou, Z.-Q., S.-P. Xie, and R. H. Zhang, 2021: Historic Yangtze flooding of 2020 tied to extreme Indian Ocean conditions. Proceedings of the National Academy of Sciences of the United States of America, 118, e2022255118, https://doi.org/10.1073/pnas.2022255118.