Adrian, R., and Coauthors, 2009: Lakes as sentinels of climate change. Limnology and Oceanography, 54, 2283−2297, https://doi.org/10.4319/lo.2009.54.6_part_2.2283.
Ao, Y. H., S. H. Lyu, Z. G. Li, L. J. Wen, and L. Zhao, 2018: Numerical simulation of the climate effect of high-altitude lakes on the Tibetan Plateau. Sciences in Cold and Arid Regions, 10, 379−391, https://doi.org/10.3724/SP.J.1226.2018.00379.
Biermann, T., W. Babel, W. Q. Ma, X. L. Chen, E. Thiem, Y. M. Ma, and T. Foken, 2014: Turbulent flux observations and modelling over a shallow lake and a wet grassland in the Nam Co basin, Tibetan Plateau. Theor. Appl. Climatol., 116, 301−316, https://doi.org/10.1007/s00704-013-0953-6.
Clites, A. H., J. P. Smith, T. S. Hunter, and A. D. Gronewold, 2014: Visualizing relationships between hydrology, climate, and water level fluctuations on Earth's largest system of lakes. Journal of Great Lakes Research, 40, 807−811, https://doi.org/10.1016/j.jglr.2014.05.014.
Feng, X. M., and Coauthors, 2016: Revegetation in China's Loess Plateau is approaching sustainable water resource limits. Nature Climate Change, 6, 1019−1022, https://doi.org/10.1038/nclimate3092.
Guo, Y. H., Y. S. Zhang, N. Ma, J. Q. Xu, and T. Zhang, 2019: Long-term changes in evaporation over Siling Co Lake on the Tibetan Plateau and its impact on recent rapid lake expansion. Atmospheric Research, 216, 141−150, https://doi.org/10.1016/j.atmosres.2018.10.006.
Kirillin, G. B., T. Shatwell, and L. J. Wen, 2021: Ice-covered lakes of tibetan plateau as solar heat collectors. Geophys. Res. Lett., 48, e2021GL093429, https://doi.org/10.1029/2021GL093429.
Lang, J. H., S. H. Lyu, Z. G. Li, Y. M. Ma, and D. S. Su, 2018: An investigation of ice surface albedo and its influence on the high-altitude lakes of the Tibetan Plateau. Remote Sensing, 10, 218, https://doi.org/10.3390/rs10020218.
Lang, J. H., Y. M. Ma, Z. G. Li, and D. S. Su, 2021: The impact of climate warming on lake surface heat exchange and ice phenology of different types of lakes on the Tibetan Plateau. Water, 13, 634, https://doi.org/10.3390/w13050634.
Lazhu, K. Yang, J. B. Wang, Y. B. Lei, Y. Y. Chen, L. P. Zhu, B. H. Ding, and J. Qin, 2016: Quantifying evaporation and its decadal change for Lake Nam Co, central Tibetan Plateau. J. Geophys. Res., 121, 7578−7591, https://doi.org/10.1002/2015JD024523.
Lazhu, and Coauthors., 2021: A new finding on the prevalence of rapid water warming during lake ice melting on the Tibetan Plateau. Science Bulletin, 66, 2358−2361, https://doi.org/10.1016/j.scib.2021.07.022.
Li, P.-F., and M. Li, 2015: Study on vegetation fraction based on kriging interpolation method—a case study of Zhaling Lake, Eling Lake. Journal of Anhui Agricultural Sciences, 43, 321−324, https://doi.org/10.3969/j.issn.0517-6611.2015.08.127. (in Chinese with English abstract
Li, X.-Y., and Coauthors, 2016a: Evaporation and surface energy budget over the largest high-altitude saline lake on the Qinghai-Tibet Plateau. J. Geophys. Res., 121, 10 470−10 485,
Li, Z.-G., S.-H. Lü, Y.-H. Ao, and X.-H. Wen, 2012: Numerical simulation of impact of ecological environment change on lake effect in the source region of the Yellow River. Plateau Meteorology, 31, 1591−1600. (in Chinese with English abstract)
Li, Z. G., S. H. Lyu, Y. H. Ao, L. J. Wen, L. Zhao, and S. Y. Wang, 2015: Long-term energy flux and radiation balance observations over Lake Ngoring, Tibetan Plateau. Atmospheric Research, 155, 13−25, https://doi.org/10.1016/j.atmosres.2014.11.019.
Li, Z. G., S. H. Lyu, L. Zhao, L. J. Wen, Y. H. Ao, and S. Y. Wang, 2016: Turbulent transfer coefficient and roughness length in a high-altitude lake, Tibetan Plateau. Theor. Appl. Climatol., 124, 723−735, https://doi.org/10.1007/s00704-015-1440-z.
Li, Z. G., S. H. Lyu, L. J. Wen, L. Zhao, Y. H. Ao, and S. Y. Wang, 2017: Effect of a cold, dry air incursion on atmospheric boundary layer processes over a high-altitude lake in the Tibetan Plateau. Atmospheric Research, 185, 32−43, https://doi.org/10.1016/j.atmosres.2016.10.024.
Li, Z. G., S. H. Lyu, L. J. Wen, L. Zhao, X. H. Meng, and Y. H. Ao, 2018a: Effect of roughness lengths on surface energy and the planetary boundary layer height over high-altitude Ngoring Lake. Theor. Appl. Climatol., 133, 1191−1205, https://doi.org/10.1007/s00704-017-2258-7.
Li, Z. G., Y. H. Ao, S. H. Lyu, J. H. Lang, L. J. Wen, V. Stepanenko, X. H. Meng, and L. Zhao, 2018b: Investigation of the ice surface albedo in the Tibetan Plateau lakes based on the field observation and MODIS products. J. Glaciol., 64, 506−516, https://doi.org/10.1017/jog.2018.35.
Li, Z. G., S. H. Lyu, L. J. Wen, L. Zhao, Y. H. Ao, and X. H. Meng, 2021a: Study of freeze-thaw cycle and key radiation transfer parameters in a Tibetan Plateau lake using LAKE2.0 model and field observations. J. Glaciol., 67, 91−106, https://doi.org/10.1017/jog.2020.87.
Li, Z. G., S. H. Lyu, S. Q. Chen, Y. H. Ao, L. Zhao, H. Chen, and X. H. Meng, 2021b: Observed characteristics of the water and heat transfer of the soil–snow–atmosphere system through the snowpack in the eastern Tibetan Plateau. Atmospheric Research, 248, 105195, https://doi.org/10.1016/j.atmosres.2020.105195.
Li, Z. G., S. H. Lyu, H. Chen, Y. H. Ao, L. Zhao, S. Y. Wang, S. B. Zhang, and X. H. Meng, 2021c: Changes in climate and snow cover and their synergistic influence on spring runoff in the source region of the Yellow River. Science of the Total Environment, 799, 149503, https://doi.org/10.1016/j.scitotenv.2021.149503.
Liu, G. X., and Coauthors, 2021: Tropical Pacific forcing of hydroclimate in the source area of the Yellow River. Geophys. Res. Lett., 48, e2021GL095876, https://doi.org/10.1029/2021GL095876.
Long, Z., W. Perrie, J. Gyakum, D. Caya, and R. Laprise, 2007: Northern lake impacts on local seasonal climate. Journal of Hydrometeorology, 8, 881−896, https://doi.org/10.1175/JHM591.1.
Lu, W. J., W. G. Wang, Q. X. Shao, Z. B. Yu, Z. C. Hao, W. Q. Xing, B. Yong, and J. X. Li, 2018: Hydrological projections of future climate change over the source region of Yellow River and Yangtze River in the Tibetan Plateau: A comprehensive assessment by coupling RegCM4 and VIC model. Hydrological Processes, 32, 2096−2117, https://doi.org/10.1002/hyp.13145.
Meng, X. H., and Coauthors, 2020: Review of climate change and its environmental influence on the Three-River Regions. Plateau Meteorology, 39, 1133−1143, https://doi.org/10.7522/j.issn.1000-0534.2019.00144. (in Chinese with English abstract
Rouse, W. R., C. J. Oswald, J. Binyamin, C. Spence, W. M. Schertzer, P. D. Blanken, N. Bussières, and C. R. Duguay, 2005: The role of northern lakes in a regional energy balance. Journal of Hydrometeorology, 6, 291−305, https://doi.org/10.1175/JHM421.1.
Rouse, W. R., P. D. Blanken, N. Bussières, A. E. Walker, C. J. Oswald, W. M. Schertzer, and C. Spence, 2008: An investigation of the thermal and energy balance regimes of Great Slave and Great Bear Lakes. Journal of Hydrometeorology, 9, 1318−1333, https://doi.org/10.1175/2008JHM977.1.
Van Cleave, K., J. D. Lenters, J. Wang, and E. M. Verhamme, 2014: A regime shift in Lake Superior ice cover, evaporation, and water temperature following the warm El Niñ winter of 1997−1998. Limnology and Oceanography, 59, 1889−1898, https://doi.org/10.4319/lo.2014.59.6.1889.
Wang, B. B., Y. M. Ma, W. Q. Ma, and Z. B. Su, 2017: Physical controls on half-hourly, daily, and monthly turbulent flux and energy budget over a high-altitude small lake on the Tibetan Plateau. J. Geophys. Res., 122, 2289−2303, https://doi.org/10.1002/2016JD026109.
Wang, B. B., Y. M. Ma, Z. B. Su, Y. Wang, and W. Q. Ma, 2020: Quantifying the evaporation amounts of 75 high-elevation large dimictic lakes on the Tibetan Plateau. Science Advances, 6, eaay8558, https://doi.org/10.1126/sciadv.aay8558.
Wang, L., J. Y. Zhang, Z. K. Shu, Y. Wang, Z. X. Bao, C. S. Liu, X. Zhou, and G. Q. Wang, 2021: Evaluation of the ability of CMIP6 global climate models to simulate precipitation in the Yellow River Basin, China. Frontiers in Earth Science, 9, 751974, https://doi.org/10.3389/feart.2021.751974.
Wang, M. X., and Coauthors, 2022: Mechanisms and effects of under-ice warming water in Ngoring Lake of Qinghai-Tibet Plateau. The Cryosphere, 16, 3635−3648, https://doi.org/10.5194/tc-16-3635-2022.
Wang, Y. P., W. W. Zhao, S. Wang, X. M. Feng, and Y. X. Liu, 2019: Yellow River water rebalanced by human regulation. Scientific Reports, 9, 9707, https://doi.org/10.1038/s41598-019-46063-5.
Webb, E. K., G. I. Pearman, and R. Leuning, 1980: Correction of flux measurements for density effects due to heat and water vapour transfer. Quart. J. Roy. Meteor. Soc., 106, 85−100, https://doi.org/10.1002/qj.49710644707.
Wen, L. J., S. H. Lv, Z. G. Li, L. Zhao, and N. Nagabhatla, 2015: Impacts of the two Biggest Lakes on local temperature and precipitation in the Yellow River source region of the Tibetan Plateau. Advances in Meteorology, 2015, 248031, https://doi.org/10.1155/2015/248031.
Wen, L. J., S. H. Lyu, G. Kirillin, Z. G. Li, and L. Zhao, 2016: Air–lake boundary layer and performance of a simple lake parameterization scheme over the Tibetan highlands. Tellus A: Dynamic Meteorology and Oceanography, 68, 31091, https://doi.org/10.3402/tellusa.v68.31091.
Zhang, Y., Y.-F. Fu, and B.-J. Hou, 2013: Analysis of the causes for runoff evolulation in the Yellow River source region. Yellow River, 35, 22−24, https://doi.org/10.3969/j.issn.1000-1379.2013.08.007. (in Chinese with English abstract