Albrecht, B. A., 1989: Aerosols, cloud microphysics, and fractional cloudiness. Science, 245, 1227−1230, https://doi.org/10.1126/science.245.4923.1227.
Allen, M. R., and W. J. Ingram, 2002: Constraints on future changes in climate and the hydrologic cycle. Nature, 419, 228−232, https://doi.org/10.1038/nature01092.
Andrews, T., P. M. Forster, and J. M. Gregory, 2009: A surface energy perspective on climate change. J. Climate, 22, 2557−2570, https://doi.org/10.1175/2008JCLI2759.1.
Bond, T. C., D. G. Streets, K. F. Yarber, S. M. Nelson, J. H. Woo, and Z. Klimont, 2004: A technology-based global inventory of black and organic carbon emissions from combustion. J. Geophys. Res., 109, D14203, https://doi.org/10.1029/2003JD003697.
Boucher, O., and Coauthors, 2013: Clouds and aerosols. Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change, T. F. Stocker et al., Eds., Cambridge University Press, 571−657, http://doi.org/10.1017/CBO9781107415324.016.
Bretherton C. S., 2015: Insights into low-latitude cloud feedbacks from high-resolution models. Philos. Trans. Roy. Soc. London, 373, https://doi.org/10.1098/rsta.2014.0415.
Emori, S., and S. J. Brown, 2005: Dynamic and thermodynamic changes in mean and extreme precipitation under changed climate. Geophys. Res. Lett., 32, L17706, https://doi.org/10.1029/2005GL023272.
Frieler, K., M. Meinshausen, T. S. Von Deimling, T. Andrews, and P. Forster, 2011: Changes in global-mean precipitation in response to warming, greenhouse gas forcing and black carbon. Geophys. Res. Lett., 38, L04702, https://doi.org/10.1029/2010GL045953.
Grabowski, W. W., 2000: Cloud microphysics and the tropical climate: Cloud-resolving model perspective. J. Climate, 13, 2306−2322, https://doi.org/10.1175/1520-0442(2000)013<2306:CMATTC>2.0.CO;2.
Gras, J. L., 2003: AEROSOLS | climatology of tropospheric aerosols. Encyclopedia of Atmospheric Sciences, J. R. Holton, Ed., Academic Press, 13−20, https://doi.org/10.1016/B0-12-227090-8/00051-8.
Held, I. M., and B. J. Soden, 2006: Robust responses of the hydrological cycle to global warming. J. Climate, 19, 5686−5699, https://doi.org/10.1175/JCLI3990.1.
Held, I. M., R. S. Hemler, and V. Ramaswamy, 1993: Radiative-convective equilibrium with explicit two-dimensional moist convection. J. Atmos. Sci., 50, 3909−3927, https://doi.org/10.1175/1520-0469(1993)050<3909:RCEWET>2.0.CO;2.
Hummel, J. R., and R. A. Reck, 1979: A global surface albedo model. J. Appl. Meteorol., 18, 239−253, https://doi.org/10.1175/1520-0450(1979)18[239:AGSAM]2.0.CO;2.
Kasting, J., 2010: How to Find a Habitable Planet. Princeton University Press, 326pp.
Khairoutdinov, M. F., and D. A. Randall, 2003: Cloud resolving modeling of the ARM summer 1997 IOP: Model formulation, results, uncertainties, and sensitivities. J. Atmos. Sci., 60, 607−625, https://doi.org/10.1175/1520-0469(2003)060<0607:CRMOTA>2.0.CO;2.
Kharin, V. V., F. W. Zwiers, X. B. Zhang, and G. C. Hegerl, 2007: Changes in temperature and precipitation extremes in the IPCC ensemble of global coupled model simulations. J. Climate, 20, 1419−1444, https://doi.org/10.1175/JCLI4066.1.
Kiehl, J. T., J. J. Hack, G. B. Bonan, B. A. Boville, D. L. Williamson, and P. J. Rasch, 1998: The national center for atmospheric research community climate model: CCM3. J. Climate, 11, 1131−1149, https://doi.org/10.1175/1520-0442(1998)011<1131:TNCFAR>2.0.CO;2.
Kipling Z., and Coauthors, 2016: What controls the vertical distribution of aerosol? Relationships between process sensitivity in HadGEM3-UKCA and inter-model variation from AeroCom Phase II Atmospheric Chemistry and Physics, 16, 2221−2241, https://doi.org/10.5194/acp-16-2221-2016.
Kvalevåg, M. M., B. H. Samset, and G. Myhre, 2013: Hydrological sensitivity to greenhouse gases and aerosols in a global climate model. Geophys. Res. Lett., 40, 1432−1438, https://doi.org/10.1002/grl.50318.
Lau, K. M., C. H. Sui, and W. K. Tao, 1993: A preliminary study of the tropical water cycle and its sensitivity to surface warming. Bull. Amer. Meteorol. Soc., 74, 1313−1321, https://doi.org/10.1175/1520-0477(1993)074<1313:APSOTT>2.0.CO;2.
Levy II, H., L. W. Horowitz, M. D. Schwarzkopf, Y. Ming, J. C. Golaz, V. Naik, and V. Ramaswamy, 2013: The roles of aerosol direct and indirect effects in past and future climate change. J. Geophys. Res., 118, 4521−4532, https://doi.org/10.1002/jgrd.50192.
Lin, L., Z. L. Wang, Y. Y. Xu, and Q. Fu, 2016: Sensitivity of precipitation extremes to radiative forcing of greenhouse gases and aerosols. Geophys. Res. Lett., 43, 9860−9868, https://doi.org/10.1002/2016GL070869.
Liu, F., J. Chai, B. Wang, J. Liu, X. Zhang, and Z. Y. Wang, 2016: Global monsoon precipitation responses to large volcanic eruptions. Sci. Rep., 6, 24331, https://doi.org/10.1038/srep24331.
Ming, Y., and V. Ramaswamy, 2011: A model investigation of aerosol-induced changes in tropical circulation. J. Climate, 24, 5125−5133, https://doi.org/10.1175/2011JCLI4108.1.
Ming, Y., V. Ramaswamy, and G. Persad, 2010: Two opposing effects of absorbing aerosols on global‐mean precipitation. Geophys. Res. Lett., 37, L13701, https://doi.org/10.1029/2010GL042895.
Muller, C., 2013: Impact of convective organization on the response of tropical precipitation extremes to warming. J. Climate, 26, 5028−5043, https://doi.org/10.1175/JCLI-D-12-00655.1.
Muller, C. J., P. A. O’Gorman, and L. E. Back, 2011: Intensification of precipitation extremes with warming in a cloud-resolving model. J. Climate, 24, 2784−2800, https://doi.org/10.1175/2011JCLI3876.1.
Myhre, G., and Coauthors, 2013: Anthropogenic and natural radiative forcing. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change, T. F. Stocker et al., Eds., Cambridge University Press, 659−740, https://doi.org/10.1017/CBO9781107415324.018.
Myhre, G., and Coauthors, 2017: PDRMIP: A Precipitation Driver and Response Model Intercomparison Project-Protocol and Preliminary Results. Bull. Amer. Meteor. Soc., 98, 1185−1198, https://doi.org/10.1175/BAMS-D-16-0019.1.
Nie, J., A. H. Sobel, D. A. Shaevitz, and S. G. Wang, 2018: Dynamic amplification of extreme precipitation sensitivity. Proc. Natl. Acad. Sci. USA, 115, 9467−9472, https://doi.org/10.1073/pnas.1800357115.
O’Gorman, P. A., and T. Schneider, 2008: The hydrological cycle over a wide range of climates simulated with an idealized GCM. J. Climate, 21, 3815−3832, https://doi.org/10.1175/2007JCLI2065.1.
O’Gorman, P. A., and T. Schneider, 2009: The physical basis for increases in precipitation extremes in simulations of 21st-century climate change. Proc. Natl. Acad. Sci. USA, 106, 14773−14777, https://doi.org/10.1073/pnas.0907610106.
Pendergrass, A. G., and D. L. Hartmann, 2012: Global-mean precipitation and black carbon in AR4 simulations. Geophys. Res. Lett., 39, L01703, https://doi.org/10.1029/2011GL050067.
Pendergrass, A. G., F. Lehner, B. M. Sanderson, and Y. Y. Xu, 2015: Does extreme precipitation intensity depend on the emissions scenario? Geophys Res. Lett., 42, 8767−8774, https://doi.org/10.1002/2015GL065854.
Penner, J. E., and Coauthors, 2001: Aerosols, their direct and indirect effects. Contribution of Working Group I to the Third Assessment Report of the Intergovernmental Panel on Climate Change, J. T. Houghton et al., Eds., Cambridge University Press, 289−348.
Pfahl, S., P. A. O’Gorman, and E. M. Fischer, 2017: Understanding the regional pattern of projected future changes in extreme precipitation. Nat. Clim. Change, 7, 423−427, https://doi.org/10.1038/nclimate3287.
Robock, A., 2000: Volcanic eruptions and climate. Rev. Geophys., 38, 191−219, https://doi.org/10.1029/1998RG000054.
Roderick, M. L., F. Sun, W. H. Lim, and G. D. Farquhar, 2014: A general framework for understanding the response of the water cycle to global warming over land and ocean. Hydrology and Earth System Sciences, 18, 1575−1589, https://doi.org/10.5194/hess-18-1575-2014.
Romps, D. M., 2011: Response of tropical precipitation to global warming. J. Atmos. Sci., 68, 123−138, https://doi.org/10.1175/2010JAS3542.1.
Shiogama, H., and Coauthors, 2010: Emission scenario dependencies in climate change assessments of the hydrological cycle. Climatic Change, 99, 321−329, https://doi.org/10.1007/S10584-009-9765-1.
Sillmann, J., C. W. Stjern, G. Myhre, and P. M. Forster, 2017: Slow and fast responses of mean and extreme precipitation to different forcing in CMIP5 simulations. Geophys. Res. Lett., 44, 6383−6390, https://doi.org/10.1002/2017GL073229.
Singh, M. S., and P. A. O’Gorman, 2014: Influence of microphysics on the scaling of precipitation extremes with temperature. Geophys. Res. Lett., 41, 6037−6044, https://doi.org/10.1002/2014GL061222.
Singh, M. S., Z. M. Kuang, E. D. Maloney, W. M. Hanna, and B. O. Wolding, 2017: Increasing potential for intense tropical and subtropical thunderstorms under global warming. Proc. Natl. Acad. Sci. USA, 114, 11657−11662, https://doi.org/10.1073/pnas.1707603114.
Sui, C. H., K. M. Lau, W. K. Tao, and J. Simpson, 1994: The tropical water and energy cycles in a cumulus ensemble model. Part I: Equilibrium climate. J. Atmos. Sci., 51, 711−728, https://doi.org/10.1175/1520-0469(1994)051<0711:TTWAEC>2.0.CO;2.
Trenberth, K. E., A. G. Dai, R. M. Rasmussen, and D. B. Parsons, 2003: The changing character of precipitation. Bull. Amer. Meteorol. Soc., 84, 1205−1217, https://doi.org/10.1175/BAMS-84-9-1205.
Vallis, G. K., P. Zurita-Gotor, C. Cairns, and J. Kidston, 2015: Response of the large-scale structure of the atmosphere to global warming. Quart. J. Roy. Meteorol. Soc., 141, 1479−1501, https://doi.org/10.1002/qj.2456.
Vogel, R., L. Nuijens, and B. Stevens, 2016: The role of precipitation and spatial organization in the response of trade-wind clouds to warming. Journal of Advances in Modeling Earth Systems, 8, 843−862, https://doi.org/10.1002/2015MS000568.
Wu, X. Q., 2002: Effects of ice microphysics on tropical radiative-convective-oceanic quasi-equilibrium states. J. Atmos. Sci., 59, 1885−1897, https://doi.org/10.1175/1520-0469(2002)059<1885:EOIMOT>2.0.CO;2.
Wu, X. Q., and M. W. Moncrieff, 1999: Effects of sea surface temperature and large-scale dynamics on the thermodynamic equilibrium state and convection over the tropical western Pacific. J. Geophys. Res., 104, 6093−6100, https://doi.org/10.1029/1998JD200116.