Antonescu, B., and S. Burcea, 2010: A cloud-to-ground lightning climatology for Romania. Mon. Wea. Rev., 138, 579−591, https://doi.org/10.1175/2009MWR2975.1.
Bandholnopparat, K., M. Sato, T. Adachi, T. Ushio, and Y. Takahashi, 2020: Estimation of the IC to CG ratio using JEM-GLIMS and ground-based lightning network data. J. Geophys. Res., 125(23), e2019JD032195, https://doi.org/10.1029/2019JD032195.
Baranski, P., M. Loboda, J. Wiszniowski, and M. Morawski, 2012: Evaluation of multiple ground flash charge structure from electric field measurements using the local lightning detection network in the region of Warsaw. Atmos. Res., 117, 99−110, https://doi.org/10.1016/j.atmosres.2011.10.011.
Beirle, S., H. Huntrieser, and T. Wagner, 2010: Direct satellite observation of lightning-produced NOX. Atmos. Chem. Phys., 10(22), 10 965−10 986,
Beirle, S., W. Koshak, R. Blakeslee, and T. Wagner, 2014: Global patterns of lightning properties derived by OTD and LIS. Nat. Hazards Earth Syst. Sci., 14(10), 2715−2726, https://doi.org/10.5194/nhess-14-2715-2014.
Boccippio, D. J., K. L. Cummins, H. J. Christian, and S. J. Goodman, 2001: Combined satellite- and surface-based estimation of the intracloud-cloud-to-ground lightning ratio over the continental United States. Mon. Wea. Rev., 129, 108−122, https://doi.org/10.1175/1520-0493(2001)129<0108:CSASBE>2.0.CO;2.
Borucki, W. J., and W. L. Chameides, 1984: Lightning: Estimates of the rates of energy dissipation and nitrogen fixation. Rev. Geophys., 22(4), 363−372, https://doi.org/10.1029/rg022i004p00363.
Brook, M., and T. Ogawa, 1977: The cloud discharge. Physics of Lightning, R. Golde, Ed., Academic Press, 191−230.
Bucsela, E. J., and Coauthors, 2010: Lightning-generated NOX seen by the ozone monitoring instrument during NASA's tropical composition, cloud and climate coupling experiment (TC4). J. Geophys. Res., 115, D00J10, https://doi.org/10.1029/2009jd013118.
Carey, L. D., W. Koshak, H. Peterson, and R. M. Mecikalski, 2016: The kinematic and microphysical control of lightning rate, extent, and NOX production. J. Geophys. Res., 121, 7975−7989, https://doi.org/10.1002/2015JD024703.
Cecil, D. J., D. E. Buechler, and R. J. Blakeslee, 2014: Gridded lightning climatology from TRMM-LIS and OTD: Dataset description. Atmos. Res., 135136, 404−414,
Chen, J. H., Q. Zhang, W. X. Feng, and Y. H. Fang, 2008: Lightning location system and lightning detection network of China power grid. High Voltage Engineering, 34(3), 425−431. (in Chinese with English abstract)
CMA, 2010: China Lightning Monitoring Reports (2009). China Meteorological Press. (in Chinese)
CMA, 2018: China Lightning Monitoring Reports (2017). China Meteorological Press. (in Chinese)
Cooray, V., M. Rahman, and V. Rakov, 2009: On the NOX production by laboratory electrical discharges and lightning. Journal of Atmospheric and Solar-Terrestrial Physics, 71(17−18), 1877−1889, https://doi.org/10.1016/j.jastp.2009.07.009.
Crutzen, P. J., 1974: Photochemical reactions initiated by and influencing ozone in unpolluted tropospheric air. Tellus, 26(1−2), 47−57, https://doi.org/10.3402/tellusa.v26i1-2.9736.
Cummins, K. L., M. J. Murphy, E. A. Bardo, W. L. Hiscox, R. B. Pyle, and A. E. Pifer, 1998: A combined TOA/MDF technology upgrade of the U.S. national lightning detection network. J. Geophys. Res., 103(D8), 9035−9044, https://doi.org/10.1029/98jd00153.
Davis, T. C., S. A. Rutledge, and B. R. Fuchs, 2019: Lightning location, NOX production, and transport by anomalous and normal polarity thunderstorms. J. Geophys. Res., 124, 8722−8742, https://doi.org/10.1029/2018JD029979.
de Souza, P. E., O. Pinto Jr., I. R. C. A. Pinto, N. J. Ferreira, and A. F. dos Santos, 2009: The intracloud/cloud-to-ground lightning ratio in Southeastern Brazil. Atmospheric Research, 91(2−4), 491−499, https://doi.org/10.1016/j.atmosres.2008.06.011.
Diendorfer, G., 2007: Lightning location systems (LLS). Proc. IX Int. Symposium on Lightning Protection, Foz do Iguaçu, Brazil.
Du, J., Y. J. Zhang, and M. H. Yan, 2002: Regional characteristic calculation of lightning production of nitrogen oxides (LNOX) (II): Analysis on calculation result of LNOX. Plateau Meteorology, 21(5), 433−440, https://doi.org/10.3321/j.issn:1000-0534.2002.05.001. (in Chinese with English abstract
Gao, J. G., Y. Liu, and W. Piao, 2019: Analysis on the characteristics of lightning current amplitude in Beijing area using ADTD data. Torrential Rain and Disasters, 38(1), 92−96, https://doi.org/10.3969/j.issn.1004-9045.2019.01.012. (in Chinese with English abstract
Griffiths, R. F., and C. T. Phelps, 1976a: A model for lightning initiation arising from positive corona streamer development. J. Geophys. Res., 81(21), 3671−3676, https://doi.org/10.1029/JC081i021p03671.
Griffiths, R. F., and C. T. Phelps, 1976b: The effects of air pressure and water vapour content on the propagation of positive corona streamers, and their implications to lightning initiation. Quart. J. Roy. Meteor. Soc., 102(432), 419−426, https://doi.org/10.1002/qj.49710243211.
Guo, F. X., M. Bao, Y. J. Mu, Z. P. Liu, Y. W. Li, and H. F. Shi, 2016: Temporal and spatial characteristics of lightning-produced nitrogen oxides in China. Journal of Atmospheric and Solar-Terrestrial Physics, 149, 100−107, https://doi.org/10.1016/j.jastp.2016.10.007.
Guo, F. X., X. Y. Ju, M. Bao, G. Y. Lu, Z. P. Liu, Y. W. Li, and Y. J. Mu, 2017: Relationship between lightning activity and tropospheric nitrogen dioxide and the estimation of lightning-produced nitrogen oxides over China. Adv. Atmos. Sci., 34(2), 235−245, https://doi.org/10.1007/s00376-016-6087-x.
Hill, R. D., 1971: Channel heating in return-stroke lightning. J. Geophys. Res., 76(3), 637−645, https://doi.org/10.1029/jc076i003p00637.
Ju, X. Y., F. X. Guo, M. Bao, Y. J. Mu, and T. X. Zheng, 2015: Estimation of lightning-generated NOX in inland China by comparison of the lightning activity and NO2 distribution over the Tibetan Plateau. Climatic and Environmental Research, 20(5), 523−532, https://doi.org/10.3878/j.issn.1006-9585.2015.14252. (in Chinese with English abstract
Levine, J. S., T. R. Augustsson, I. C. Andersont, J. M. Hoell Jr, and D. A. Brewer, 1984: Tropospheric sources of NOX: Lightning and biology. Atmos. Environ., 18(9), 1797−1804, https://doi.org/10.1016/0004-6981(84)90355-X.
Li, J. X., F. X. Guo, H. B. Hu, R. J. Li, M. H. Qian, and W. A. Xiao, 2017: Comparative analysis of SAFIR and ADTD lightning location data over Beijing and its circumjacent regions. Plateau Meteorology, 36(4), 1115−1126. (in Chinese with English abstract)
Ma, M., S. C. Tao, B. Y. Zhu, and W. T. Lü, 2005: Climatological distribution of lightning density observed by satellites in China and its circumjacent regions. Science in China Series D: Earth Sciences, 48(2), 219−229, https://doi.org/10.1360/03yd0204.
Maggio, C. R., T. C. Marshall, and M. Stolzenburg, 2009: Estimations of charge transferred and energy released by lightning flashes. J. Geophys. Res., 114, D14203, https://doi.org/10.1029/2008JD011506.
Marshall, T. C., M. P. McCarthy, and W. D. Rust, 1995: Electric field magnitudes and lightning initiation in thunderstorms. J. Geophys. Res., 100(D4), 7097−7103, https://doi.org/10.1029/95JD00020.
Mecikalski, R. M., and L. D. Carey, 2018: Radar reflectivity and altitude distributions of lightning as a function of IC, CG, and HY Flashes: Implications for LNOX production. J. Geophys. Res., 123, 12 796−12 813,
Medici, G., K. L. Cummins, D. J. Cecil, W. J. Koshak, and S. D. Rudlosky, 2017: The intracloud lightning fraction in the contiguous United States. Mon. Wea. Rev., 145(11), 4481−4499, https://doi.org/10.1175/mwr-d-16-0426.1.
Ogawa, T., and M. Brook, 1964: The mechanism of the intracloud lightning discharge. J. Geophys. Res., 69(24), 5141−5150, https://doi.org/10.1029/JZ069i024p05141.
Peyrous, R., and R. M. Lapeyre, 1982: Gaseous products created by electrical discharges in the atmosphere and condensation nuclei resulting from gaseous phase reactions. Atmos. Environ., 16(5), 959−968, https://doi.org/10.1016/0004-6981(82)90182-2.
Price, C., J. Penner, and M. Prather, 1997: NOX from lightning: 1. Global distribution based on lightning physics. J. Geophys. Res., 102(D5), 5929−5941, https://doi.org/10.1029/96JD03504.
Rakov, V. A., and M. A. Uman, 2003: Lightning: Physics and Effects. Cambridge University Press, 44, 81, 82.
Schumann, U., and H. Huntrieser, 2007: The global lightning-induced nitrogen oxides source. Atmospheric Chemistry and Physics, 7(14), 3823−3907, https://doi.org/10.5194/acp-7-3823-2007.
Sisterson, D. L., and Y. P. Liaw, 1990: An evaluation of lightning and corona discharge on thunderstorm air and precipitation chemistry. Journal of Atmospheric Chemistry, 10(1), 83−96, https://doi.org/10.1007/BF01980039.
Soriano, L. R., and F. de Pablo, 2007: Total flash density and the intracloud/cloud-to-ground lightning ratio over the Iberian Peninsula. J. Geophys. Res., 112(D13), D13114, https://doi.org/10.1029/2006JD007624.
Stolzenburg, M., W. D. Rust, and T. C. Marshall, 1998a: Electrical structure in thunderstorm convective regions: 2. Isolated storms. J. Geophys. Res., 103(D12), 14 079−14 096,
Stolzenburg, M., W. D. Rust, and T. C. Marshall, 1998b: Electrical structure in thunderstorm convective regions: 3. Synthesis. J. Geophys. Res., 103(D12), 14 097−14 108,
Stolzenburg, M., W. D. Rust, B. F. Smull, and T. C. Marshall, 1998c: Electrical structure in thunderstorm convective regions: 1. Mesoscale convective systems. J. Geophys. Res., 103(D12), 14 059−14 078,
Sun, A. P., J. Du, Y. J. Zhang, and M. H. Yan, 2004: Calculation of global characteristics of NOX produced by lightning. Plateau Meteorology, 23(4), 481−487, https://doi.org/10.3321/j.issn:1000-0534.2004.04.010. (in Chinese with English abstract
Uman, M. A., R. E. Orville, and L. E. Salanave, 1964: The density, pressure, and particle distribution in a lightning stroke near peak temperature. J. Atmos. Sci., 21, 306−310, https://doi.org/10.1175/1520-0469(1964)021<0306:TDPAPD>2.0.CO;2.
Verma, S., P. K. Yadava, D. M. Lal, R. K. Mall, H. Kumar, and S. Payra, 2021: Role of lightning NOX in ozone formation: A review. Pure Appl. Geophys., 178(4), 1425−1443, https://doi.org/10.1007/s00024-021-02710-5.
Wang, H. L., F. X. Guo, T. L. Zhao, M. O. Qin, and L. Zhang, 2016: A numerical study of the positive cloud-to-ground flash from the forward flank of normal polarity thunderstorm. Atmospheric Research, 169, 183−190, https://doi.org/10.1016/j.atmosres.2015.10.011.
Wang, J., and Y. Chen, 2015: Analysis of the 2009−2012 lightning distribution characteristics in China. Meteorological Monthly, 42(2), 160−170. (in Chinese with English abstract)
Wang, Y., A. W. DeSilva, G. C. Goldenbaum, and R. R. Dickerson, 1998: Nitric oxide production by simulated lightning: Dependence on current, energy, and pressure. J. Geophys. Res., 103(D15), 19 149−19 159,
Weiss, S. A., D. R. MacGorman, and K. M. Calhoun, 2012: Lightning in the anvils of supercell thunderstorms. Mon. Wea. Rev., 140(7), 2064−2079, https://doi.org/10.1175/MWR-D-11-00312.1.
Winn, W. P., G. W. Schwede, and C. B. Moore, 1974: Measurements of electric fields in thunderclouds. J. Geophys. Res., 79(12), 1761−1767, https://doi.org/10.1029/JC079i012p01761.
Xia, R. D., D. L. Zhang, and B. L. Wang, 2015: A 6-yr cloud-to-ground lightning climatology and its relationship to rainfall over central and eastern China. J. Appl. Meteorol. Climatol., 54, 2443−2460, https://doi.org/10.1175/JAMC-D-15-0029.1.
Yadava, P. K., M. Soni, S. Verma, H. Kumar, A. Sharma, and S. Payra, 2020: The major lightning regions and associated casualties over India. Natural Hazards, 101, 217−229, https://doi.org/10.1007/s11069-020-03870-8.
Yuan, T., and X. S. Qie, 2004: Spatial and temporal distributions of lightning activities in China from satellite observation. Plateau Meteorology, 23(4), 488−494, https://doi.org/10.3321/j.issn:1000-0534.2004.04.011. (in Chinese with English abstract
Zhang, R., G. S. Zhang, Y. J. Li, Y. H. Wang, B. Wu, H. Yu, and Y. X. Liu, 2014: Estimate of NOX production in the lightning channel based on three-dimensional lightning locating system. Science China Earth Sciences, 57(7), 1613−1625, https://doi.org/10.1007/s11430-013-4812-1.
Zhang, Y. J., M. H. Yan, and J. Du, 2002: Regional characteristic calculation of lightning production of nitrogen oxides (LNOX) (I): Theory and calculation method. Plateau Meteorology, 21(4), 348−353, https://doi.org/10.3321/j.issn:1000-0534.2002.04.002. (in Chinese with English abstract
Zheng, D., Y. J. Zhang, Q. Meng, L. W. Chen, and J. R. Dan, 2016: Climatological comparison of small- and large-current cloud-to-ground lightning flashes over southern China. J. Climate, 29(8), 2831−2848, https://doi.org/10.1175/JCLI-D-15-0386.1.
Zhou, Y. J., and X. S. Qie, 2002: Mechanism and estimation of lightning-generated NOX in Chinese inland area. Plateau Meteorology, 21(5), 501−508, https://doi.org/10.3321/j.issn:1000-0534.2002.05.010. (in Chinese with English abstract
Zhou, Y. J., X. S. Qie, M. H. Yan, and G. S. Zhang, 2003: Ground observation of NOX generated by lightning in thunderstorm weather. Plateau Meteorology, 22(3), 275−280, https://doi.org/10.3321/j.issn:1000-0534.2003.03.011. (in Chinese with English abstract
Zhu, J., 2016: The comparison and analysis of lightning characteristic in China using satellite-based and ground-based observed data. Volume II, Proc. of 2016 Academic Annual Meeting of Chinese Society of Environmental Sciences, Haikou, Chinese Society of Environmental Sciences, 272−278. (in Chinese)