Akiyoshi, H., T. Nakamura, T. Miyasaka, M. Shiotani, and M. Suzuki, 2016: A nudged chemistry-climate model simulation of chemical constituent distribution at northern high-latitude stratosphere observed by SMILES and MLS during the 2009/2010 stratospheric sudden warming. J. Geophys. Res.: Atmos., 121(3), 1361−1380, https://doi.org/10.1002/2015JD023334.
Akiyoshi, H., and Coauthors, 2009: A CCM simulation of the breakup of the Antarctic polar vortex in the years 1980−2004 under the CCMVal scenarios. J. Geophys. Res.: Atmos., 114, D03103, https://doi.org/10.1029/2007JD009261.
Albers, J. R., and T. R. Nathan, 2013: Ozone loss and recovery and the preconditioning of upward-propagating planetary wave activity. J. Atmos. Sci., 70(12), 3977−3994, https://doi.org/10.1175/JAS-D-12-0259.1.
Andrews, D. G., and M. E. McIntyre, 1976: Planetary waves in horizontal and vertical shear: The generalized Eliassen-Palm relation and the mean zonal acceleration. J. Atmos. Sci., 33, 2031−2048, https://doi.org/10.1175/1520-0469(1976)033<2031:PWIHAV>2.0.CO;2.
Andrews, D. G., and M. E. McIntyre, 1978: Generalized Eliassen-Palm and Charney-Drazin theorems for waves on axismmetric mean flows in compressible atmospheres. J. Atmos. Sci., 35, 175−185, https://doi.org/10.1175/1520-0469(1978)035<0175:GEPACD>2.0.CO;2.
Andrews, D. G., J. R. Holton, and C. B. Leovy, 1987: Middle Atmosphere Dynamics. Academic Press, 489 pp.
Ball, W. T., and Coauthors, 2016: An upper-branch Brewer–Dobson circulation index for attribution of stratospheric variability and improved ozone and temperature trend analysis. Atmospheric Chemistry and Physics, 16, 15 485−15 500,
Bell, C. J., L. J. Gray, and J. Kettleborough, 2010: Changes in Northern Hemisphere stratospheric variability under increased CO2 concentrations. Quart. J. Roy. Meteor. Soc., 136(650), 1181−1190, https://doi.org/10.1002/qj.633.
Boer, G. J., and Coauthors, 2016: The decadal climate prediction project (DCPP) contribution to CMIP6. Geoscientific Model Development, 9(10), 3751−3777, https://doi.org/10.5194/gmd-9-3751-2016.
Brewer, A. W., 1949: Evidence for a world circulation provided by the measurements of helium and water vapour distribution in the stratosphere. Quart. J. Roy. Meteor. Soc., 75(326), 351−363, https://doi.org/10.1002/qj.49707532603.
Butchart, N., 2014: The Brewer-Dobson circulation. Rev. Geophys., 52(2), 157−184, https://doi.org/10.1002/2013RG000448.
Butchart, N., and A. A. Scaife, 2001: Removal of chlorofluorocarbons by increased mass exchange between the stratosphere and troposphere in a changing climate. Nature, 410, 799−802, https://doi.org/10.1038/35071047.
Charney, J. G., and P. G. Drazin, 1961: Propagation of planetary-scale disturbances from the lower into the upper atmosphere. J. Geophys. Res., 66(1), 83−109, https://doi.org/10.1029/JZ066i001p00083.
Checa-Garcia, R., K. P. Shine, and M. I. Hegglin, 2016: The contribution of greenhouse gases to the recent slowdown in global-mean temperature trends. Environmental Research Letters, 11, 094018, https://doi.org/10.1088/1748-9326/11/9/094018.
Davis, S. M., and Coauthors, 2016: The Stratospheric Water and Ozone Satellite Homogenized (SWOOSH) database: A long-term database for climate studies. Earth System Science Data, 8(2), 461−490, https://doi.org/10.5194/essd-8-461-2016.
de Grandpré, J., S. R. Beagley, V. I. Fomichev, E. Griffioen, J. C. McConnell, A. S. Medvedev, and T. G. Shepherd, 2000: Ozone climatology using interactive chemistry: Results from the Canadian Middle Atmosphere Model. J. Geophys. Res.: Atmos., 105(D21), 26 475−26 491,
Dobson, G. M. B., 1956: Origin and distribution of the polyatomic molecules in the atmosphere. Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences, 236(1205), 187−193, https://doi.org/10.1098/rspa.1956.0127.
Ebita, A., and Coauthors, 2011: The japanese 55-year reanalysis “jra-55”: An interim report. SOLA, 7, 149−152, https://doi.org/10.2151/sola.2011-038.
Egorova, T., E. Rozanov, V. Zubov, E. Manzini, W. Schmutz, and T. Peter, 2005: Chemistry-climate model SOCOL: A validation of the present-day climatology. Atmospheric Chemistry and Physics, 5, 1557−1576, https://doi.org/10.5194/acp-5-1557-2005.
Eyring, V., and Coauthors, 2005: A strategy for process-oriented validation of coupled chemistry-climate models. Bull. Amer. Meteor. Soc., 86(8), 1117−1134, https://doi.org/10.1175/BAMS-86-8-1117.
Eyring, V., and Coauthors, 2006: Assessment of temperature, trace species, and ozone in chemistry-climate model simulations of the recent past. J. Geophys. Res.: Atmos., 111(D22), D22308, https://doi.org/10.1029/2006JD007327.
Eyring, V., and Coauthors, 2008: Overview of the new CCMVal reference and sensitivity simulations in support of upcoming ozone and climate assessments and the planned SPARC CCMVal. SPARC Newsletter, 30, 20−26.
Eyring, V., and Coauthors, 2010: Multi-model assessment of stratospheric ozone return dates and ozone recovery in CCMVal-2 models. Atmospheric Chemistry and Physics, 10(19), 9451−9472, https://doi.org/10.5194/acp-10-9451-2010.
Eyring, V., and Coauthors, 2013: Overview of IGAC/SPARC Chemistry-Climate Model Initiative (CCMI) community simulations in support of upcoming ozone and climate assessments. SPARC Newsletter, 40, 48−66.
Fu, Q., S. Solomon, H. A. Pahlavan, and P. Lin, 2019: Observed changes in Brewer-Dobson circulation for 1980−2018. Environmental Research Letters, 14(11), 114026, https://doi.org/10.1088/1748-9326/ab4de7.
García-Herrera, R., N. Calvo, R. R. Garcia, and M. A. Giorgetta, 2006: Propagation of ENSO temperature signals into the middle atmosphere: A comparison of two general circulation models and ERA-40 reanalysis data. J. Geophys. Res.: Atmos., 111, D06101, https://doi.org/10.1029/2005JD006061.
Garcia, R. R., A. K. Smith, D. E. Kinnison, Á. de la Cámara, and D. J. Murphy, 2017: Modification of the gravity wave parameterization in the Whole Atmosphere Community Climate Model: Motivation and results. J. Atmos. Sci., 74(1), 275−291, https://doi.org/10.1175/JAS-D-16-0104.1.
Gillett, N. P., and D. W. J. Thompson, 2003: Simulation of recent Southern Hemisphere climate change. Science, 302(5643), 273−275, https://doi.org/10.1126/science.1087440.
Gillett, N. P., and Coauthors, 2011: Attribution of observed changes in stratospheric ozone and temperature. Atmospheric Chemistry and Physics, 11(2), 599−609, https://doi.org/10.5194/acp-11-599-2011.
Haynes, P. H., M. E. McIntyre, T. G. Shepherd, C. J. Marks, and K. P. Shine, 1991: On the “Downward Control” of extratropical diabatic circulations by eddy-induced mean zonal forces. J. Atmos. Sci., 48(4), 651−678, https://doi.org/10.1175/1520-0469(1991)048<0651:OTCOED>2.0.CO;2.
Hersbach, H., and D. Dee, 2016: ERA5 reanalysis is in production. ECMWF Newsletter, 147, 5−6.
Hitchcock, P., T. G. Shepherd, and C. McLandress, 2009: Past and future conditions for polar stratospheric cloud formation simulated by the Canadian Middle Atmosphere Model. Atmospheric Chemistry and Physics, 9, 483−495, https://doi.org/10.5194/acp-9-483-2009.
Holton, J. R., and C. Mass, 1976: Stratospheric vacillation cycles. J. Atmos. Sci., 33(11), 2218−2225, https://doi.org/10.1175/1520-0469(1976)033<2218:SVC>2.0.CO;2.
Holton, J. R., P. H. Haynes, M. E. McIntyre, A. R. Douglass, R. B. Rood, and L. Pfister, 1995: Stratosphere-troposphere exchange. Rev. Geophys., 33(4), 403−439, https://doi.org/10.1029/95RG02097.
Hood, L. L., R. D. Mcpeters, J. P. Mccormack, L. E. Flynn, S. M. Hollandsworth, and J. F. Gleason, 1993: Altitude dependence of stratospheric ozone trends based on nimbus 7 SBUV data. Geophys. Res. Lett., 20(23), 2667−2670, https://doi.org/10.1029/93GL03087.
Hu, D. Z., W. S. Tian, F. Xie, C. X. Wang, and J. K. Zhang, 2015: Impacts of stratospheric ozone depletion and recovery on wave propagation in the boreal winter stratosphere. J. Geophys. Res.: Atmos., 120(16), 8299−8317, https://doi.org/10.1002/2014JD022855.
Hu, Y., and Q. Fu, 2009: Stratospheric warming in Southern Hemisphere high latitudes since 1979. Atmospheric Chemistry and Physics, 9(13), 4329−4340, https://doi.org/10.5194/acp-9-4329-2009.
Hu, Y. Y., 2006: Possible impact of stratospheric polar ozone depletion tropospheric climate. Acta Scientiarum Naturalium Universitatis Pekinensis, 42(5), 561−568, https://doi.org/10.3321/j.issn:0479-8023.2006.05.001. (in Chinese with English abstract
Hu, Y. Y., and K. K. Tung, 2002: Interannual and decadal variations of planetary wave activity, stratospheric cooling, and northern hemisphere annular mode. J. Climate, 15(13), 1659−1673, https://doi.org/10.1175/1520-0442(2002)015<1659:IADVOP>2.0.CO;2.
Hu, Y. Y., and K. K. Tung, 2003: Possible ozone-induced long-term changes in planetary wave activity in late winter. J. Climate, 16(18), 3027−3038, https://doi.org/10.1175/1520-0442(2003)016<3027:POLCIP>2.0.CO;2.
Ivy, D. J., S. Solomon, and H. E. Rieder, 2016: Radiative and dynamical influences on polar stratospheric temperature trends. J. Climate, 29(13), 4927−4938, https://doi.org/10.1175/JCLI-D-15-0503.1.
Jiang, X., S. J. Eichelberger, D. L. Hartmann, R. Shia, and Y. L. Yung, 2007: Influence of doubled CO2 on ozone via changes in the Brewer-Dobson circulation. J. Atmos. Sci., 64(7), 2751−2755, https://doi.org/10.1175/JAS3969.1.
Kobayashi, C., and T. Iwasaki, 2016: Brewer-Dobson circulation diagnosed from JRA-55. J. Geophys. Res.: Atmos., 121(4), 1493−1510, https://doi.org/10.1002/2015JD023476.
Kodera, K., M. E. Hori, S. Yukimoto, and M. Sigmond, 2008: Solar modulation of the Northern Hemisphere winter trends and its implications with increasing CO2. Geophys. Res. Lett., 35(3), L03704, https://doi.org/10.1029/2007GL031958.
Kurokawa, J. I., H. Akiyoshi, T. Nagashima, H. Masunaga, T. Nakajima, M. Takahashi, and H. Nakane, 2005: Effects of atmospheric sphericity on stratospheric chemistry and dynamics over Antarctica. J. Geophys. Res.: Atmos., 110, D21305, https://doi.org/10.1029/2005JD005798.
Li, F. N., D. R. Chavas, K. A. Reed, and D. T. Dawson II, 2020: Climatology of severe local storm environments and synoptic-scale features over North America in ERA5 reanalysis and CAM6 simulation. J. Climate, 33(19), 8339−8365, https://doi.org/10.1175/JCLI-D-19-0986.1.
Lin, P., and Q. Fu, 2013: Changes in various branches of the Brewer-Dobson circulation from an ensemble of chemistry climate models. J. Geophys. Res.: Atmos., 118(1), 73−84, https://doi.org/10.1029/2012JD018813.
Lurton, T., and Coauthors, 2020: Implementation of the CMIP6 forcing data in the IPSL-CM6A-LR model. Journal of Advances in Modeling Earth Systems, 12, e2019MS001940, https://doi.org/10.1029/2019MS001940.
Matsuno, T., 1970: Vertical propagation of stationary planetary waves in the winter Northern Hemisphere. J. Atmos. Sci., 27(6), 871−883, https://doi.org/10.1175/1520-0469(1970)027<0871:VPOSPW>2.0.CO;2.
McLandress, C., A. I. Jonsson, D. A. Plummer, M. C. Reader, J. F. Scinocca, and T. G. Shepherd, 2010: Separating the dynamical effects of climate change and ozone depletion. Part I: Southern Hemisphere stratosphere. J. Climate, 23(18), 5002−5020, https://doi.org/10.1175/2010JCLI3586.1.
Morgenstern, O., P. Braesicke, F. M. O'Connor, A. C. Bushell, C. E. Johnson, S. M. Osprey, and J. A. Pyle, 2009: Evaluation of the new UKCA climate-composition model - Part 1: The stratosphere. Geoscientific Model Development, 2(1), 43−57, https://doi.org/10.5194/gmd-2-43-2009.
Morgenstern, O., and Coauthors, 2010: Review of the formulation of present-generation stratospheric chemistry-climate models and associated external forcings. J. Geophys. Res.: Atmos., 115, D00M02, https://doi.org/10.1029/2009JD013728.
Morgenstern, O., and Coauthors, 2013: Impacts of climate change, ozone recovery, and increasing methane on surface ozone and the tropospheric oxidizing capacity. J. Geophys. Res.: Atmos., 118(2), 1028−1041, https://doi.org/10.1029/2012JD018382.
Morgenstern, O., and Coauthors, 2017: Review of the global models used within phase 1 of the Chemistry-Climate Model Initiative (CCMI). Geoscientific Model Development, 10(2), 639−671, https://doi.org/10.5194/gmd-10-639-2017.
Nath, O., and S. Sridharan, 2015: Equatorial middle atmospheric chemical composition changes during sudden stratospheric warming events. Atmospheric Chemistry and Physics, 15(17), 23 969−23 988,
Nathan, T. R., and E. C. Cordero, 2007: An ozone-modified refractive index for vertically propagating planetary waves. J. Geophys. Res.: Atmos., 112, D02105, https://doi.org/10.1029/2006JD007357.
Nekola, J. C., and P. S. White, 1999: The distance decay of similarity in biogeography and ecology. Journal of Biogeography, 26(4), 867−878, https://doi.org/10.1046/j.1365-2699.1999.00305.x.
Newman, P. A., E. R. Nash, and J. E. Rosenfield, 2001: What controls the temperature of the Arctic stratosphere during the spring?. J. Geophys. Res.: Atmos., 106(D17), 19 999−20 010,
Polvani, L. M., D. W. Waugh, G. J. P. Correa, and S. W. Son, 2011: Stratospheric ozone depletion: The main driver of twentieth-century atmospheric circulation changes in the Southern Hemisphere. J. Climate, 24(3), 795−812, https://doi.org/10.1175/2010JCLI3772.1.
Polvani, L. M., M. Abalos, R. Garcia, D. Kinnison, and W. J. Randel, 2018: Significant weakening of Brewer-Dobson circulation trends over the 21st century as a consequence of the Montreal Protocol. Geophys. Res. Lett., 45(1), 401−409, https://doi.org/10.1002/2017GL075345.
Polvani, L. M., and Coauthors, 2019: Large impacts, past and future, of ozone-depleting substances on Brewer-Dobson circulation trends: A multimodel assessment. J. Geophys. Res.: Atmos., 124(13), 6669−6680, https://doi.org/10.1029/2018JD029516.
Ramaswamy, V., M. D. Schwarzkopf, and W. J. Randel, 1996: Fingerprint of ozone depletion in the spatial and temporal pattern of recent lower-stratospheric cooling. Nature, 382(6592), 616−618, https://doi.org/10.1038/382616a0.
Ramaswamy, V., and Coauthors, 2001: Stratospheric temperature trends: Observations and model simulations. Rev. Geophys., 39(1), 71−122, https://doi.org/10.1029/1999RG000065.
Randel, W. J., and F. Wu, 1999: Cooling of the arctic and antarctic polar stratospheres due to ozone depletion. J. Climate, 12(5), 1467−1479, https://doi.org/10.1175/1520-0442(1999)012<1467:COTAAA>2.0.CO;2.
Randel, W. J., A. K. Smith, F. Wu, C. Z. Zou, and H. F. Qian, 2016: Stratospheric temperature trends over 1979-2015 derived from combined SSU, MLS, and SABER satellite observations. J. Climate, 29(13), 4843−4859, https://doi.org/10.1175/JCLI-D-15-0629.1.
Rind, D., J. Lerner, J. Perlwitz, C. McLinden, and M. Prather, 2002: Sensitivity of tracer transports and stratospheric ozone to sea surface temperature patterns in the doubled CO2 climate. J. Geophys. Res.: Atmos., 107(D24), 4800, https://doi.org/10.1029/2002JD002483.
Sakazaki, T., and Coauthors, 2013: Diurnal ozone variations in the stratosphere revealed in observations from the Superconducting Submillimeter-Wave Limb-Emission Sounder (SMILES) on board the International Space Station (ISS). J. Geophys. Res.: Atmos., 118(7), 2991−3006, https://doi.org/10.1002/jgrd.50220.
Schraner, M., and Coauthors, 2008: Technical Note: Chemistry-climate model SOCOL: Version 2.0 with improved transport and chemistry/microphysics schemes. Atmospheric Chemistry and Physics, 8(19), 5957−5974, https://doi.org/10.5194/acp-8-5957-2008.
Scinocca, J. F., N. A. McFarlane, M. Lazare, J. Li, and D. Plummer, 2008: Technical Note: The CCCma third generation AGCM and its extension into the middle atmosphere. Atmospheric Chemistry and Physics, 8(23), 7055−7074, https://doi.org/10.5194/acp-8-7055-2008.
Sekiguchi, Y., 1986: Antarctic ozone change correlated to the stratospheric temperature-field. Geophys. Res. Lett., 13(12), 1202−1205, https://doi.org/10.1029/GL013i012p01202.
Shibata, K., and M. Deushi, 2008: Long-term variations and trends in the simulation of the middle atmosphere 1980−2004 by the chemistry-climate model of the Meteorological Research Institute. Ann. Geophys., 26(5), 1299−1326, https://doi.org/10.5194/angeo-26-1299-2008.
Shindell, D. T., and G. A. Schmidt, 2004: Southern Hemisphere climate response to ozone changes and greenhouse gas increases. Geophys. Res. Lett., 31, L18209, https://doi.org/10.1029/2004GL020724.
Sridharan, S., S. Sathishkumar, and S. Gurubaran, 2012: An unusual reduction in the mesospheric semi-diurnal tidal amplitude over Tirunelveli (8.7°N, 77.8°E) prior to the 2011 minor warming and its relationship with stratospheric ozone. Journal of Atmospheric and Solar-Terrestrial Physics, 89, 27−32, https://doi.org/10.1016/j.jastp.2012.07.012.
Solomon, S., 1999: Stratospheric ozone depletion: A review of concepts and history. Rev. Geophys., 37(3), 275−316, https://doi.org/10.1029/1999RG900008.
Solomon, S., D. E. Kinnison, J. Bandoro, and R. Garcia, 2015: Simulations of polar ozone depletion: an update. J. Geophys. Res.: Atmos., 120(15), 7958−7974, https://doi.org/10.1002/2015JD023365.
Steinitz, O., J. Heller, A. Tsoar, D. Rotem, and R. Kadmon, 2005: Predicting regional patterns of similarity in species composition for conservation planning. Conservation Biology, 19(6), 1978−1988, https://doi.org/10.1111/j.1523-1739.2005.00237.x.
Steinitz, O., J. Heller, A. Tsoar, D. Rotem, and R. Kadmon, 2006: Environment, dispersal and patterns of species similarity. Journal of Biogeography, 33(6), 1044−1054, https://doi.org/10.1111/j.1365-2699.2006.01473.x.
Stolarski, R. S., A. R. Douglass, P. A. Newman, S. Pawson, and M. R. Schoeberl, 2010: Relative contribution of greenhouse gases and ozone-depleting substances to temperature trends in the stratosphere: A chemistry-climate model study. J. Climate, 23(1), 28−42, https://doi.org/10.1175/2009JCLI2955.1.
Swart, N. C., and Coauthors, 2019: The Canadian earth system model version 5 (CanESM5.0.3). Geoscientific Model Development, 12, 4823−4873, https://doi.org/10.5194/gmd-12-4823-2019.
Tatebe, H., and Coauthors, 2019: Description and basic evaluation of simulated mean state, internal variability, and climate sensitivity in MIROC6. Geoscientific Model Development, 12, 2727−2765, https://doi.org/10.5194/gmd-12-2727-2019.
Thompson, D. W. J., and S. Solomon, 2002: Interpretation of recent Southern Hemisphere climate change. Science, 296(5569), 895−899, https://doi.org/10.1126/science.1069270.
Wang, Z., J. K. Zhang, T. Wang, W. H. Feng, Y. H. Hu, and X. R. Xu, 2021: Analysis of the Antarctic ozone hole in November. J. Climate, 34(16), 6513−6529, https://doi.org/10.1175/JCLI-D-20-0906.1.
Weber, M., S. Dikty, J. P. Burrows, H. Garny, M. Dameris, A. Kubin, J. Abalichin, and U. Langematz, 2011: The Brewer-Dobson circulation and total ozone from seasonal to decadal time scales. Atmospheric Chemistry and Physics, 11(21), 11 221−11 235,
Xiao, F., and X. D. Peng, 2004: A convexity preserving scheme for conservative advection transport. J. Comput. Phys., 198(2), 389−402, https://doi.org/10.1016/j.jcp.2004.01.013.
Yukimoto, S., and Coauthors, 2019: The meteorological research institute Earth system model version 2.0, MRI-ESM2.0: Description and basic evaluation of the physical component. J. Meteor. Soc. Japan. Ser. II, 97, 931−965, https://doi.org/10.2151/jmsj.2019-051.
Zeng, G., J. A. Pyle, and P. J. Young, 2008: Impact of climate change on tropospheric ozone and its global budgets. Atmospheric Chemistry and Physics, 8(2), 369−387, https://doi.org/10.5194/acp-8-369-2008.
Zeng, G., O. Morgenstern, P. Braesicke, and J. A. Pyle, 2010: Impact of stratospheric ozone recovery on tropospheric ozone and its budget. Geophys. Res. Lett., 37, L09805, https://doi.org/10.1029/2010GL042812.
Zhang, J. K., W. S. Tian, F. Xie, J. A. Pyle, J. Keeble, and T. Wang, 2020: The influence of zonally asymmetric stratospheric ozone changes on the Arctic polar vortex shift. J. Climate, 33(11), 4641−4658, https://doi.org/10.1175/JCLI-D-19-0647.1.
Zhang, J. K., and Coauthors, 2022: Responses of Arctic sea ice to stratospheric ozone depletion. Science Bulletin, 67(11), 1182−1190, https://doi.org/10.1016/j.scib.2022.03.015.
Zou, C. Z., and H. F. Qian, 2016: Stratospheric temperature climate data record from merged SSU and AMSU-A observations. J. Atmos. Oceanic Technol., 33(9), 1967−1984, https://doi.org/10.1175/JTECH-D-16-0018.1.