Brown, S. G., S. Eberly, P. Paatero, and G. A. Norris, 2015: Methods for estimating uncertainty in PMF solutions: Examples with ambient air and water quality data and guidance on reporting PMF results. Science of the Total Environment, 518−519, 626−635, https://doi.org/10.1016/j.scitotenv.2015.01.022.
Cao, J., Y. P. Pan, S. S. Yu, B. Zheng, D. S. Ji, J. B. Hu, and J. Liu, 2022: Rapid decline in atmospheric organic carbon deposition in rural Beijing, North China between 2016 and 2020. Atmos. Environ., 276, 119030, https://doi.org/10.1016/j.atmosenv.2022.119030.
Carbone, C., and Coauthors, 2014: 3-year chemical composition of free tropospheric PM1 at the Mt. Cimone GAW global station – South Europe – 2165 m a.s.l. Atmos. Environ., 87, 218−227, https://doi.org/10.1016/j.atmosenv.2014.01.048.
Chen, Q. C., F. Ikemori, and M. Mochida, 2016a: Light absorption and excitation-emission fluorescence of urban organic aerosol components and their relationship to chemical structure. Environmental Science & Technology, 50, 10 859−10 868, https://doi.org/10.1021/acs.est.6b02541.
Chen, Q. C., and Coauthors, 2016b: Characterization of chromophoric water-soluble organic matter in urban, forest, and marine aerosols by HR-ToF-AMS analysis and excitation-emission matrix spectroscopy. Environmental Science & Technology, 50, 10 351−10 360, https://doi.org/10.1021/acs.est.6b01643.
Chen, Q. C., F. Ikemori, Y. Nakamura, P. Vodicka, K. Kawamura, and M. Mochida, 2017: Structural and light-absorption characteristics of complex water-insoluble organic mixtures in urban submicrometer aerosols. Environmental Science & Technology, 51, 8293−8303, https://doi.org/10.1021/acs.est.7b01630.
Chen, Q. C., Z. Mu, W. H. Song, Y. Q. Wang, Z. H. Yang, L. X. Zhang, and Y.-L. Zhang, 2019: Size-resolved characterization of the chromophores in atmospheric particulate matter from a typical coal-burning city in China. J. Geophys. Res., 124, 10 546−10 563, https://doi.org/10.1029/2019JD031149.
Chen, Q. C., X. Y. Hua, and A. Dyussenova, 2021: Evolution of the chromophore aerosols and its driving factors in summertime Xi'an, Northwest China. Chemosphere, 281, 130838, https://doi.org/10.1016/j.chemosphere.2021.130838.
Chen, S., and Coauthors, 2022: Source and formation process impact the chemodiversity of rainwater dissolved organic matter along the Yangtze River Basin in summer. Water Research, 211, 118024, https://doi.org/10.1016/j.watres.2021.118024.
Coble, P. G., 2007: Marine optical biogeochemistry: The chemistry of ocean color. Chemical Reviews, 107, 402−418, https://doi.org/10.1021/cr050350+.
Cong, Z. Y., K. Kawamura, S. C. Kang, and P. Q. Fu, 2015: Penetration of biomass-burning emissions from South Asia through the Himalayas: New insights from atmospheric organic acids. Scientific Reports, 5, 9580, https://doi.org/10.1038/srep09580.
Finlayson-Pitts, B. J., L. M. Wingen, V. Perraud, and M. J. Ezell, 2020: Open questions on the chemical composition of airborne particles. Communications Chemistry, 3, 108, https://doi.org/10.1038/s42004-020-00347-4.
Fu, P. Q., K. Kawamura, K. Okuzawa, S. G. Aggarwal, G. H. Wang, Y. Kanaya, and Z. F. Wang, 2008: Organic molecular compositions and temporal variations of summertime mountain aerosols over Mt. Tai, North China Plain. J. Geophys. Res., 113, D19107, https://doi.org/10.1029/2008JD009900.
Fu, P. Q., and Coauthors, 2015: Fluorescent water-soluble organic aerosols in the High Arctic atmosphere. Scientific Reports, 5, 9845, https://doi.org/10.1038/srep09845.
Glasius, M., and A. H. Goldstein, 2016: Recent discoveries and future challenges in atmospheric organic chemistry. Environmental Science & Technology, 50, 2754−2764, https://doi.org/10.1021/acs.est.5b05105.
Goldstein, A. H., and I. E. Galbally, 2007: Known and unexplored organic constituents in the earth's atmosphere. Environmental Science & Technology, 41, 1514−1521, https://doi.org/10.1021/es072476p.
Hänel, A., H. Baars, D. Althausen, A. Ansmann, R. Engelmann, and J. Y. Sun, 2012: One-year aerosol profiling with EUCAARI Raman lidar at Shangdianzi GAW station: Beijing plume and seasonal variations. J. Geophys. Res., 117, D13201, https://doi.org/10.1029/2012JD017577.
Huang, S., W. Hu, J. Chen, Z. J. Wu, D. Z. Zhang, and P. Q. Fu, 2021: Overview of biological ice nucleating particles in the atmosphere. Environment International, 146, 106197, https://doi.org/10.1016/j.envint.2020.106197.
Huguet, A., L. Vacher, S. Relexans, S. Saubusse, J. M. Froidefond, and E. Parlanti, 2009: Properties of fluorescent dissolved organic matter in the Gironde Estuary. Organic Geochemistry, 40, 706−719, https://doi.org/10.1016/j.orggeochem.2009.03.002.
Ji, D. S., and Coauthors, 2019: The carbonaceous aerosol levels still remain a challenge in the Beijing-Tianjin-Hebei region of China: Insights from continuous high temporal resolution measurements in multiple cities. Environment International, 126, 171−183, https://doi.org/10.1016/j.envint.2019.02.034.
Khan, J. Z., L. Sun, Y. Z. Tian, G. L. Shi, and Y. C. Feng, 2021: Chemical characterization and source apportionment of PM1 and PM2.5 in Tianjin, China: Impacts of biomass burning and primary biogenic sources. Journal of Environmental Sciences, 99, 196−209, https://doi.org/10.1016/j.jes.2020.06.027.
Lang, J. L., and Coauthors, 2017: Trends of PM2.5 and chemical composition in Beijing, 2000–2015. Aerosol and Air Quality Research, 17, 412−425, https://doi.org/10.4209/aaqr.2016.07.0307.
Lawaetz, A. J., and C. A. Stedmon, 2009: Fluorescence intensity calibration using the Raman scatter peak of water. Applied Spectroscopy, 63, 936−940, https://doi.org/10.1366/000370209788964548.
Lee, H. J., A. Laskin, J. Laskin, and S. A. Nizkorodov, 2013: Excitation-emission spectra and fluorescence quantum yields for fresh and aged biogenic secondary organic aerosols. Environmental Science & Technology, 47, 5763−5770, https://doi.org/10.1021/es400644c.
Li, J. J., and Coauthors, 2021: Effects of atmospheric aging processes on in vitro induced oxidative stress and chemical composition of biomass burning aerosols. Journal of Hazardous Materials, 401, 123750, https://doi.org/10.1016/j.jhazmat.2020.123750.
Li, X. F., and Coauthors, 2022: Molecular compositions, optical properties, and implications of dissolved brown carbon in snow/ice on the Tibetan Plateau glaciers. Environment International, 164, 107276, https://doi.org/10.1016/j.envint.2022.107276.
Li, X. R., R. Y. Zhang, X. G. Cong, L. L. Cheng, J. Liu, and H. H. Xu, 2015: Characterization of the size-segregated inorganic compounds in Lin'an, a regional atmosphere background station in the Yangtze River Delta region. Atmospheric Pollution Research, 6, 1058−1065, https://doi.org/10.1016/j.apr.2015.06.002.
Li, Y., J. Tao, L. M. Zhang, X. F. Jia, and Y. F. Wu, 2016: High contributions of secondary inorganic aerosols to PM2.5 under polluted levels at a regional station in Northern China. International Journal of Environmental Research and Public Health, 13, 1202, https://doi.org/10.3390/ijerph13121202.
McKnight, D. M., E. W. Boyer, P. K. Westerhoff, P. T. Doran, T. Kulbe, and D. T. Andersen, 2001: Spectrofluorometric characterization of dissolved organic matter for indication of precursor organic material and aromaticity. Limnology and Oceanography, 46, 38−48, https://doi.org/10.4319/lo.2001.46.1.0038.
Mu, Q., and Coauthors, 2018: Temperature effect on phase state and reactivity controls atmospheric multiphase chemistry and transport of PAHs. Science Advances, 4, eaap7314, https://doi.org/10.1126/sciadv.aap7314.
Murphy, K. R., C. A. Stedmon, D. Graeber, and R. Bro, 2013: Fluorescence spectroscopy and multi-way techniques. PARAFAC. Analytical Methods, 5, 6557−6566, https://doi.org/10.1039/C3AY41160E.
Ohno, T., and R. Bro, 2006: Dissolved organic matter characterization using multiway spectral decomposition of fluorescence landscapes. Soil Science Society of America Journal, 70, 2028−2037, https://doi.org/10.2136/sssaj2006.0005.
Paatero, P., and U. Tapper, 1994: Positive matrix factorization: A non-negative factor model with optimal utilization of error estimates of data values. Environmetrics, 5, 111−126, https://doi.org/10.1002/env.3170050203.
Pavuluri, C. M., K. Kawamura, S. G. Aggarwal, and T. Swaminathan, 2011: Characteristics, seasonality and sources of carbonaceous and ionic components in the tropical aerosols from Indian region. Atmospheric Chemistry and Physics, 11, 8215−8230, https://doi.org/10.5194/acp-11-8215-2011.
Polissar, A. V., P. K. Hopke, P. Paatero, W. C. Malm, and J. F. Sisler, 1998: Atmospheric aerosol over Alaska: 2. Elemental composition and sources. J. Geophys. Res., 103, 19 045−19 057, https://doi.org/10.1029/98JD01212.
Pöschl, U., 2005: Atmospheric aerosols: Composition, transformation, climate and health effects. Angewandte Chemie International Edition, 44, 7520−7540, https://doi.org/10.1002/anie.200501122.
Pu, W. W., and Coauthors, 2020: Regional transport and urban emissions are important ammonia contributors in Beijing, China. Environmental Pollution, 265, 115062, https://doi.org/10.1016/j.envpol.2020.115062.
Qi, M. X., L. Jiang, Y. X. Liu, Q. L. Xiong, C. Y. Sun, X. Li, W. J. Zhao, and X. C. Yang, 2018: Analysis of the characteristics and sources of carbonaceous aerosols in PM2.5 in the Beijing, Tianjin, and Langfang region, China. International Journal of Environmental Research and Public Health, 15, 1483, https://doi.org/10.3390/ijerph15071483.
Qin, J. J., L. M. Zhang, X. M. Zhou, J. C. Duan, S. T. Mu, K. Xiao, J. N. Hu, and J. H. Tan, 2018: Fluorescence fingerprinting properties for exploring water-soluble organic compounds in PM2.5 in an industrial city of northwest China. Atmos. Environ., 184, 203−211, https://doi.org/10.1016/j.atmosenv.2018.04.049.
Qu, W. J., X. Y. Zhang, R. Arimoto, D. Wang, Y. Q. Wang, L. W. Yan, and Y. Li, 2008: Chemical composition of the background aerosol at two sites in southwestern and northwestern China: Potential influences of regional transport. Tellus B: Chemical and Physical Meteorology, 60, 657−673, https://doi.org/10.1111/j.1600-0889.2008.00342.x.
Qu, W.-J., X.-Y. Zhang, R. Arimoto, Y.-Q. Wang, D. Wang, L.-F. Sheng, and G. Fu, 2009: Aerosol background at two remote CAWNET sites in western China. Science of the Total Environment, 407, 3518−3529, https://doi.org/10.1016/j.scitotenv.2009.02.012.
Reynolds, E., 2020: Air pollution a cause of UK girl's death, finds global landmark ruling. CNN, December 16, https://www.cnn.com/2020/12/16/uk/air-pollution-death-ella-kissi-debrah-uk-gbr-intl.
Shrivastava, M., and Coauthors, 2019: Urban pollution greatly enhances formation of natural aerosols over the Amazon rainforest. Nature Communications, 10, 1046, https://doi.org/10.1038/s41467-019-08909-4.
Su, J., P. S. Zhao, J. Ding, X. Du, and Y. J. Dou, 2021: Insights into measurements of water-soluble ions in PM2.5 and their gaseous precursors in Beijing. Journal of Environmental Sciences, 102, 123−137, https://doi.org/10.1016/j.jes.2020.08.031.
Tang, J., and Coauthors, 2021: Measurement report: Long-emission-wavelength chromophores dominate the light absorption of brown carbon in aerosols over Bangkok: Impact from biomass burning. Atmospheric Chemistry and Physics, 21, 11 337−11 352, https://doi.org/10.5194/acp-21-11337-2021.
Tang, Q., Y. Lei, G. Yan, W. B. Xue, and X. Y. Wang, 2020: Characteristics of heavy air pollution in Beijing-Tianjin-Hebei and the surrounding areas during autumn and winter and policy recommendations. IOP Conference Series: Earth and Environmental Science, 569, 012041, https://doi.org/10.1088/1755-1315/569/1/012041.
Wang, G. H., K. Kawamura, S. Lee, K. Ho, and J. J. Cao, 2006: Molecular, seasonal, and spatial distributions of organic aerosols from fourteen Chinese cities. Environmental Science & Technology, 40, 4619−4625, https://doi.org/10.1021/es060291x.
Wang, Y. Q., 2014: MeteoInfo: GIS software for meteorological data visualization and analysis. Meteorological Applications, 21, 360−368, https://doi.org/10.1002/met.1345.
Wu, D., X. X. Tie, and X. J. Deng, 2006: Chemical characterizations of soluble aerosols in southern China. Chemosphere, 64, 749−757, https://doi.org/10.1016/j.chemosphere.2005.11.066.
Wu, G. M., and Coauthors, 2019: Water-soluble brown carbon in atmospheric aerosols from godavari (Nepal), a regional representative of South Asia. Environmental Science & Technology, 53, 3471−3479, https://doi.org/10.1021/acs.est.9b00596.
Wu, G. M., and Coauthors, 2021a: Fluorescence characteristics of water-soluble organic carbon in atmospheric aerosol. Environmental Pollution, 268, 115906, https://doi.org/10.1016/j.envpol.2020.115906.
Wu, L. B., and Coauthors, 2021b: Source forensics of inorganic and organic nitrogen using δ15N for tropospheric aerosols over Mt. Tai. npj Climate and Atmospheric Science, 4, 8, https://doi.org/10.1038/s41612-021-00163-0.
Wu, W. Q., M. Zhang, and Y. T. Ding, 2020: Exploring the effect of economic and environment factors on PM2.5 concentration: A case study of the Beijing-Tianjin-Hebei region. Journal of Environmental Management, 268, 110703, https://doi.org/10.1016/j.jenvman.2020.110703.
Xie, M. J., N. Mladenov, M. W. Williams, J. C. Neff, J. Wasswa, and M. P. Hannigan, 2016: Water soluble organic aerosols in the Colorado Rocky Mountains, USA: Composition, sources and optical properties. Scientific Reports, 6, 39339, https://doi.org/10.1038/srep39339.
Xie, X. C., and Coauthors, 2020: Light-absorbing and fluorescent properties of atmospheric brown carbon: A case study in Nanjing, China. Chemosphere, 251, 126350, https://doi.org/10.1016/j.chemosphere.2020.126350.
Xu, W., and Coauthors, 2019: Impact of emission controls on air quality in Beijing during APEC 2014: Implications from water-soluble ions and carbonaceous aerosol in PM2.5 and their precursors. Atmos. Environ., 210, 241−252, https://doi.org/10.1016/j.atmosenv.2019.04.050.
Yan, G., and G. Kim, 2017: Speciation and sources of brown carbon in precipitation at Seoul, Korea: Insights from excitation-emission matrix spectroscopy and carbon isotopic analysis. Environmental Science & Technology, 51, 11 580−11 587, https://doi.org/10.1021/acs.est.7b02892.
Yan, P., N. Huan, Y. M. Zhang, and H. G. Zhou, 2012a: Size resolved aerosol OC, EC at a regional background station in the suburb of Beijing. Journal of Applied Meteorological Science, 23, 285−293, https://doi.org/10.3969/j.issn.1001-7313.2012.03.004. (in Chinese with English abstract
Yan, P., R. J. Zhang, N. Huan, X. J. Zhou, Y. M. Zhang, H. G. Zhou, and L. M. Zhang, 2012b: Characteristics of aerosols and mass closure study at two WMO GAW regional background stations in eastern China. Atmos. Environ., 60, 121−131, https://doi.org/10.1016/j.atmosenv.2012.05.050.
Yang, D. Z., X. L. Yu, X. M. Fang, F. Wu, and X. S. Li, 1996: A study of aerosol at regional backgroundstations and baseline station. Quarterly Journal of Applied Meteorlolgy, 7, 396−405. (in Chinese with English abstract)
Yang, Y. J., R. Zhou, Y. Yu, Y. Yan, Y. Liu, Y. Di, D. Wu, and W. Q. Zhang, 2017: Size-resolved aerosol water-soluble ions at a regional background station of Beijing, Tianjin, and Hebei, North China. Journal of Environmental Sciences, 55, 146−156, https://doi.org/10.1016/j.jes.2016.07.012.
Ye, Y. Q., H. C. Zhan, X. W. Yu, J. Li, X. M. Wang, and Z. Q. Xie, 2021: Detection of organosulfates and nitrooxy-organosulfates in Arctic and Antarctic atmospheric aerosols, using ultra-high resolution FT-ICR mass spectrometry. Science of the Total Environment, 767, 144339, https://doi.org/10.1016/j.scitotenv.2020.144339.
Yi, Y., Y. N. Zhang, H. W. Liu, P. P. Tian, Y. F. Li, Y. Lei, and Y. B. Wang, 2020: Spectral characteristics and source analysis of WSOC of PM2.5 in winter of Xi’an. Environmental Science, 41, 3924−3931, https://doi.org/10.13227/j.hjkx.202001127. (in Chinese with English abstract
Yue, S. Y., H. Ren, S. Y. Fan, Y. L. Sun, Z. F. Wang, and P. Q. Fu, 2016: Springtime precipitation effects on the abundance of fluorescent biological aerosol particles and HULIS in Beijing. Scientific Reports, 6, 29618, https://doi.org/10.1038/srep29618.
Yue, S. Y., and Coauthors, 2017: High abundance of fluorescent biological aerosol particles in winter in Beijing, China. ACS Earth and Space Chemistry, 1, 493−502, https://doi.org/10.1021/acsearthspacechem.7b00062.
Yue, S. Y., and Coauthors, 2019: Abundance and diurnal trends of fluorescent bioaerosols in the troposphere over Mt. Tai, China, in Spring. J. Geophys. Res., 124, 4158−4173, https://doi.org/10.1029/2018JD029486.
Yue, S. Y., and Coauthors, 2022a: Biological and nonbiological sources of fluorescent aerosol particles in the urban atmosphere. Environmental Science & Technology, 56, 7588−7597, https://doi.org/10.1021/acs.est.1c07966.
Yue, S. Y., and Coauthors, 2022b: Brown carbon from biomass burning imposes strong circum-Arctic warming. One Earth, 5, 293−304, https://doi.org/10.1016/j.oneear.2022.02.006.
Zhan, Y. N., J. L. Li, N. T. Tsona, B. Chen, C. Q. Yan, C. George, and L. Du, 2022: Seasonal variation of water-soluble brown carbon in Qingdao, China: Impacts from marine and terrestrial emissions. Environ. Res., 212, 113144, https://doi.org/10.1016/j.envres.2022.113144.
Zhang, C., and Coauthors, 2021: Light absorption and fluorescence characteristics of water-soluble organic compounds in carbonaceous particles at a typical remote site in the southeastern Himalayas and Tibetan Plateau. Environmental Pollution, 272, 116000, https://doi.org/10.1016/j.envpol.2020.116000.
Zhang, R. Y., and Coauthors, 2015: Formation of urban fine particulate matter. Chemical Reviews, 115, 3803−3855, https://doi.org/10.1021/acs.chemrev.5b00067.
Zhao, P. S., F. Dong, Y. D. Yang, D. He, X. J. Zhao, W. Z. Zhang, Q. Yao, and H. Y. Liu, 2013a: Characteristics of carbonaceous aerosol in the region of Beijing, Tianjin, and Hebei, China. Atmos. Environ., 71, 389−398, https://doi.org/10.1016/j.atmosenv.2013.02.010.
Zhao, P. S., F. Dong, D. He, X. J. Zhao, X. L. Zhang, W. Z. Zhang, Q. Yao, and H. Y. Liu, 2013b: Characteristics of concentrations and chemical compositions for PM2.5 in the region of Beijing, Tianjin, and Hebei, China. Atmospheric Chemistry and Physics, 13, 4631−4644, https://doi.org/10.5194/acp-13-4631-2013.
Zhao, P. S., Y. N. Chen, and J. Su, 2017: Size-resolved carbonaceous components and water-soluble ions measurements of ambient aerosol in Beijing. Journal of Environmental Sciences, 54, 298−313, https://doi.org/10.1016/j.jes.2016.08.027.
Zhao, W. Y., and Coauthors, 2018: Molecular distribution and compound-specific stable carbon isotopic composition of dicarboxylic acids, oxocarboxylic acids and α-dicarbonyls in PM2.5 from Beijing, China. Atmospheric Chemistry and Physics, 18, 2749−2767, https://doi.org/10.5194/acp-18-2749-2018.
Zhao, W. Y., and Coauthors, 2019: Excitation-emission matrix fluorescence, molecular characterization and compound-specific stable carbon isotopic composition of dissolved organic matter in cloud water over Mt. Tai. Atmos. Environ., 213, 608−619, https://doi.org/10.1016/j.atmosenv.2019.06.034.
Zheng, M., L. G. Salmon, J. J. Schauer, L. M. Zeng, C. S. Kiang, Y. H. Zhang, and G. R. Cass, 2005: Seasonal trends in PM2.5 source contributions in Beijing, China. Atmos. Environ., 39, 3967−3976, https://doi.org/10.1016/j.atmosenv.2005.03.036.
Zou, B., J. W. You, Y. Lin, X. L. Duan, X. G. Zhao, X. Fang, M. J. Campen, and S. X. Li, 2019: Air pollution intervention and life-saving effect in China. Environment International, 125, 529−541, https://doi.org/10.1016/j.envint.2018.10.045.
Zsolnay, A., E. Baigar, M. Jimenez, B. Steinweg, and F. Saccomandi, 1999: Differentiating with fluorescence spectroscopy the sources of dissolved organic matter in soils subjected to drying. Chemosphere, 38, 45−50, https://doi.org/10.1016/S0045-6535(98)00166-0.