Balsamo, G., S. Boussetta, E. Dutra, A. Beljaars, P. Viterbo, and B. van den Hurk, 2011: Evolution of land surface processes in the Integrated Forecasting System. ECMWF Newsletter, 127, 17−22.
Barlage, M., M. Tewari, F. Chen, G. Miguez-Macho, Z.-L. Yang, and G.-Y. Niu, 2015: The effect of groundwater interaction in North American regional climate simulations with WRF/Noah-MP. Climatic Change, 129, 485−498, https://doi.org/10.1007/s10584-014-1308-8.
Betts, A. K., J. H. Ball, A. C. M. Beljaars, M. J. Miller, and P. A. Viterbo, 1996: The land surface-atmosphere interaction: A review based on observational and global modeling perspectives. J. Geophys. Res.: Atmos., 101, 7209−7225, https://doi.org/10.1029/95JD02135.
Bonan, G. B., P. J. Lawrence, K. W. Oleson, S. Levis, M. Jung, M. Reichstein, D. M. Lawrence, and S. C. Swenson, 2011: Improving canopy processes in the Community Land Model version 4 (CLM4) using global flux fields empirically inferred from FLUXNET data. J. Geophys. Res.: Biogeosci., 116, G02014, https://doi.org/10.1029/2010JG001593.
Brovkin, V., and Coauthors, 2013: Effect of anthropogenic land-use and land-cover changes on climate and land carbon storage in CMIP5 projections for the twenty-first century. J. Climate, 26, 6859−6881, https://doi.org/10.1175/JCLI-D-12-00623.1.
Cai, X. T., Z.-L. Yang, C. H. David, G.-Y. Niu, and M. Rodell, 2014: Hydrological evaluation of the Noah-MP land surface model for the Mississippi River Basin. J. Geophys. Res.: Atmos., 119, 23−38, https://doi.org/10.1002/2013JD020792.
Carroll, M. L., J. R. Townshend, C. M. DiMiceli, P. Noojipady, and R. A. Sohlberg, 2009: A new global raster water mask at 250 m resolution. International Journal of Digital Earth, 2, 291−308, https://doi.org/10.1080/17538940902951401.
Dai, A. G., T. T. Qian, K. E. Trenberth, and J. D. Milliman, 2009: Changes in continental freshwater discharge from 1948 to 2004. J. Climate, 22, 2773−2792, https://doi.org/10.1175/2008JCLI2592.1.
Dickinson, R. E., 1991: Global change and terrestrial hydrology—A review. Tellus A: Dynamic Meteorology and Oceanography, 43, 176−181, https://doi.org/10.3402/tellusa.v43i4.11946.
Dickinson, R. E., M. Shaikh, R. Bryant, and L. Graumlich, 1998: Interactive canopies for a climate model. J. Climate, 11, 2823−2836, https://doi.org/10.1175/1520-0442(1998)011<2823:ICFACM>2.0.CO;2.
Entin, J. K., A. Robock, K. Y. Vinnikov, S. E. Hollinger, S. X. Liu, and A. Namkhai, 2000: Temporal and spatial scales of observed soil moisture variations in the extratropics. J. Geophys. Res.: Atmos., 105, 11 865−11 877, https://doi.org/10.1029/2000JD900051.
Fekete, B. M., C. J. Vörösmarty, and W. Grabs, 2002: High-resolution fields of global runoff combining observed river discharge and simulated water balances. Global Biogeochemical Cycles, 16, 15-1−15-10, https://doi.org/10.1029/1999GB001254.
Friedl, M. A., D. Sulla-Menashe, B. Tan, A. Schneider, N. Ramankutty, A. Sibley, and X. M. Huang, 2010: MODIS Collection 5 global land cover: Algorithm refinements and characterization of new datasets. Remote Sensing of Environment, 114, 168−182, https://doi.org/10.1016/j.rse.2009.08.016.
Gao, Y. H., K. Li, F. Chen, Y. S. Jiang, and C. G. Lu, 2015: Assessing and improving Noah-MP land model simulations for the central Tibetan Plateau. J. Geophys. Res.: Atmos., 120, 9258−9278, https://doi.org/10.1002/2015JD023404.
Gerrits, A. M. J., H. H. G. Savenije, E. J. M. Veling, and L. Pfister, 2009: Analytical derivation of the Budyko curve based on rainfall characteristics and a simple evaporation model. Water Resources Research, 45, W04403, https://doi.org/10.1029/2008WR007308.
Giorgi, F., and R. Avissar, 1997: Representation of heterogeneity effects in Earth system modeling: Experience from land surface modeling. Rev. Geophys., 35, 413−437, https://doi.org/10.1029/97RG01754.
Jung, M., M. Reichstein, and A. Bondeau, 2009: Towards global empirical upscaling of FLUXNET eddy covariance observations: Validation of a model tree ensemble approach using a biosphere model. Biogeosciences, 6, 2001−2013, https://doi.org/10.5194/bg-6-2001-2009.
Jung, M., and Coauthors, 2010: Recent decline in the global land evapotranspiration trend due to limited moisture supply. Nature, 467, 951−954, https://doi.org/10.1038/nature09396.
Koster, R. D., and P. C. D. Milly, 1997: The interplay between transpiration and runoff formulations in land surface schemes used with atmospheric models. J. Climate, 10, 1578−1591, https://doi.org/10.1175/1520-0442(1997)010<1578:TIBTAR>2.0.CO;2.
Lai, X., J. Wen, S. X. Cen, X. Huang, H. Tian, and X. K. Shi, 2016: Spatial and temporal soil moisture variations over China from simulations and observations. Advances in Meteorology, 2016, 4587687, https://doi.org/10.1155/2016/4587687.
Landerer, F. W., and S. C. Swenson, 2012: Accuracy of scaled GRACE terrestrial water storage estimates. Water Resources Research, 48, W04531, https://doi.org/10.1029/2011WR011453.
Lawrence, D. M., and Coauthors, 2011: Parameterization improvements and functional and structural advances in Version 4 of the Community Land Model. Journal of Advances in Modeling Earth Systems, 3, M03001, https://doi.org/10.1029/2011MS00045.
Li, M. X., Z. G. Ma, and M. X. Lv, 2017: Variability of modeled runoff over China and its links to climate change. Climatic Change, 144, 433−445, https://doi.org/10.1007/s10584-015-1593-x.
Lin, P. R., L. J. Hopper Jr., Z.-L. Yang, M. Lenz, and J. W. Zeitler, 2018a: Insights into hydrometeorological factors constraining flood prediction skill during the May and October 2015 Texas Hill Country Flood Events. Journal of Hydrometeorology, 19, 1339−1361, https://doi.org/10.1175/JHM-D-18-0038.1.
Lin, P. R., M. A. Rajib, Z. L. Yang, M. Somos‐Valenzuela, V. Merwade, D. R. Maidment, Y. Wang, and L. Chen, 2018b: Spatiotemporal evaluation of simulated evapotranspiration and streamflow over texas using the WRF-Hydro-RAPID modeling framework. Journal of the American Water Resources Association, 54, 40−54, https://doi.org/10.1111/1752-1688.12585.
Liu, J. G., and Z. H. Xie, 2013: Improving simulation of soil moisture in China using a multiple meteorological forcing ensemble approach. Hydrology and Earth System Sciences, 17, 3355−3369, https://doi.org/10.5194/hess-17-3355-2013.
Liu, J. G., B. H. Jia, Z. H. Xie, and C. X. Shi, 2016: Ensemble simulation of land evapotranspiration in China based on a multi-forcing and multi-model approach. Adv. Atmos. Sci., 33, 673−684, https://doi.org/10.1007/s00376-016-5213-0.
Ma, N., G.-Y. Niu, Y. L. Xia, X. T. Cai, Y. S. Zhang, Y. M. Ma, and Y. H. Fang, 2017: A systematic evaluation of Noah-MP in simulating land-atmosphere energy, water, and carbon exchanges over the continental United States. J. Geophys. Res.: Atmos., 122, 12 245−12 268, https://doi.org/10.1002/2017JD027597.
Ma, S. M., T. J. Zhou, A. G. Dai, and Z. Y. Han, 2015: Observed changes in the distributions of daily precipitation frequency and amount over China from 1960 to 2013. J. Climate, 28, 6960−6978, https://doi.org/10.1175/JCLI-D-15-0011.1.
Maidment, D. R., 2017: Conceptual framework for the national flood interoperability experiment. Journal of the American Water Resources Association, 53, 245−257, https://doi.org/10.1111/1752-1688.12474.
Nash, J. E., and J. V. Sutcliffe, 1970: River flow forecasting through conceptual models part I — A discussion of principles. J. Hydrol., 10, 282−290, https://doi.org/10.1016/0022-1694(70)90255-6.
Niu, G.-Y., and Z.-L. Yang, 2004: Effects of vegetation canopy processes on snow surface energy and mass balances. J. Geophys. Res.: Atmos., 109, D23111, https://doi.org/10.1029/2004JD004884.
Niu, G.-Y., and Z.-L. Yang, 2006: Effects of frozen soil on snowmelt runoff and soil water storage at a continental scale. Journal of Hydrometeorology, 7, 937−952, https://doi.org/10.1175/JHM538.1.
Niu, G.-Y., Z.-L. Yang, R. E. Dickinson, and L. E. Gulden, 2005: A simple TOPMODEL-based runoff parameterization (SIMTOP) for use in global climate models. J. Geophys. Res.: Atmos., 110, D21106, https://doi.org/10.1029/2005JD006111.
Niu, G.-Y., and Coauthors, 2011: The community Noah land surface model with multiparameterization options (Noah-MP): 1. Model description and evaluation with local-scale measurements. J. Geophys. Res.: Atmos., 116, D12109, https://doi.org/10.1029/2010JD015139.
Pitman, A. J., 2003: The evolution of, and revolution in, land surface schemes designed for climate models. International Journal of Climatology, 23, 479−510, https://doi.org/10.1002/joc.893.
Reichle, R. H., R. D. Koster, G. J. M. De Lannoy, B. A. Forman, Q. Liu, S. P. P. Mahanama, and A. Touré, 2011: Assessment and enhancement of MERRA land surface hydrology estimates. J. Climate, 24, 6322−6338, https://doi.org/10.1175/JCLI-D-10-05033.1.
Reynolds, C. A., T. J. Jackson, and W. J. Rawls, 2000: Estimating soil water-holding capacities by linking the Food and Agriculture Organization Soil map of the world with global pedon databases and continuous pedotransfer functions. Water Resources Research, 36, 3653−3662, https://doi.org/10.1029/2000WR900130.
Robock, A., K. Y. Vinnikov, G. Srinivasan, J. K. Entin, S. E. Hollinger, N. A. Speranskaya, S. Liu, and A. Namkhai, 2000: The global soil moisture data bank. Bull. Amer. Meteor. Soc., 81, 1281−1300, https://doi.org/10.1175/1520-0477(2000)081<1281:TGSMDB>2.3.CO;2.
Rodell, M., and Coauthors, 2004: The global land data assimilation system. Bull. Amer. Meteor. Soc., 85, 381−394, https://doi.org/10.1175/BAMS-85-3-381.
Sellers, P. J., and Coauthors, 1997: Modeling the exchanges of energy, water, and carbon between continents and the atmosphere. Science, 275, 502−509, https://doi.org/10.1126/science.275.5299.502.
Shi, X. Y., J. F. Mao, P. E. Thornton, and M. Y. Huang, 2013: Spatiotemporal patterns of evapotranspiration in response to multiple environmental factors simulated by the Community Land Model. Environmental Research Letters, 8, 024012, https://doi.org/10.1088/1748-9326/8/2/024012.
Wahr, J., S. Swenson, V. Zlotnicki, and I. Velicogna, 2004: Time-variable gravity from GRACE: First results. Geophys. Res. Lett., 31, L11501, https://doi.org/10.1029/2004GL019779.
Wang, P., G. Y. Niu, Y. H. Fang, R. J. Wu, J. J. Yu, G. F. Yuan, S. P. Pozdniakov, and R. L. Scott, 2018: Implementing dynamic root optimization in Noah-MP for simulating phreatophytic root water uptake. Water Resources Research, 54, 1560−1575, https://doi.org/10.1002/2017WR021061.
Xia, Y. L., and Coauthors, 2012: Continental-scale water and energy flux analysis and validation for North American Land Data Assimilation System project phase 2 (NLDAS-2): 2. Validation of model-simulated streamflow. J. Geophys. Res.: Atmos., 117, D03110, https://doi.org/10.1029/2011JD016051.
Yang, R. Q., and M. A. Friedl, 2003: Modeling the effects of three-dimensional vegetation structure on surface radiation and energy balance in boreal forests. J. Geophys. Res.: Atmos., 108, 8615, https://doi.org/10.1029/2002JD003109.
Yang, Z.-L., and G.-Y. Niu, 2003: The versatile integrator of surface and atmosphere processes: Part 1. Model description. Global and Planetary Change, 38, 175−189, https://doi.org/10.1016/S0921-8181(03)00028-6.
Yang, Z.-L., and Coauthors, 2011: The community Noah land surface model with multiparameterization options (Noah-MP): 2. Evaluation over global river basins. J. Geophys. Res.: Atmos., 116, D12110, https://doi.org/10.1029/2010JD015140.
Zheng, H., and Z.-L. Yang, 2016: Effects of soil-type datasets on regional terrestrial water cycle simulations under different climatic regimes. J. Geophys. Res.: Atmos., 121, 14 387−14 402, https://doi.org/10.1002/2016JD025187.
Zheng, H., Z. L. Yang, P. R. Lin, J. F. Wei, W. Y. Wu, L. C. Li, L. Zhao, and S. Wang, 2019: On the sensitivity of the precipitation partitioning into evapotranspiration and runoff in land surface parameterizations. Water Resources Research, 55, 95−111, https://doi.org/10.1029/2017WR022236.