Anwender, D., P. A. Harr, and S. C. Jones, 2008: Predictability associated with the downstream impacts of the extratropical transition of tropical cyclones: Case studies. Mon. Wea. Rev., 136, 3226−3247, https://doi.org/10.1175/2008MWR2249.1.
Archambault, H. M., L. F. Bosart, D. Keyser, and J. M. Cordeira, 2013: A climatological analysis of the extratropical flow response to recurving Western North Pacific tropical cyclones. Mon. Wea. Rev., 141, 2325−2346, https://doi.org/10.1175/MWR-D-12-00257.1.
Archambault, H. M., D. Keyser, L. F. Bosart, C. A. Davis, and J. M. Cordeira, 2015: A composite perspective of the extratropical flow response to recurving Western North Pacific tropical cyclones. Mon. Wea. Rev., 143, 1122−1141, https://doi.org/10.1175/MWR-D-14-00270.1.
Bell, G. D., and Coauthors, 2000: Climate assessment for 1999. Bull. Amer. Meteor. Soc., 81, S1−S50, https://doi.org/10.1175/1520-0477(2000)81[s1:CAF]2.0.CO;2.
Blackmon, M. L., J. M. Wallace, N.-C. Lau, and S. L. Mullen, 1977: An observational study of the Northern Hemisphere wintertime circulation. J. Atmos. Sci., 34, 1040−1053, https://doi.org/10.1175/1520-0469(1977)034<1040:AOSOTN>2.0.CO;2.
Booth, J. F., L. A. Thompson, J. Patoux, K. A. Kelly, and S. Dickinson, 2010: The signature of the midlatitude tropospheric storm tracks in the surface winds. J. Climate, 23, 1160−1174, https://doi.org/10.1175/2009JCLI3064.1.
Chan, J. C. L., 2000: Tropical cyclone activity over the western North Pacific associated with El Niño and La Niña events. J. Climate, 13, 2960−2972, https://doi.org/10.1175/1520-0442(2000)013<2960:TCAOTW>2.0.CO;2.
Chang, E. K. M., 2001: GCM and observational diagnoses of the seasonal and interannual variations of the Pacific storm track during the cool season. J. Atmos. Sci., 58, 1784−1800, https://doi.org/10.1175/1520-0469(2001)058<1784:GAODOT>2.0.CO;2.
Chang, E. K. M., and S. Song, 2006: The seasonal cycles in the distribution of precipitation around cyclones in the western North Pacific and Atlantic. J. Atmos. Sci., 63, 815−839, https://doi.org/10.1175/JAS3661.1.
Chang, E. K. M., and Y. J. Guo, 2007: Dynamics of the stationary anomalies associated with the interannual variability of the midwinter Pacific storm track—The roles of tropical heating and remote eddy forcing. J. Atmos. Sci., 64, 2442−2461, https://doi.org/10.1175/JAS3986.1.
Chang, E. K. M., and Y. J. Guo, 2012: Is Pacific storm-track activity correlated with the strength of upstream wave seeding. J. Climate, 25, 5768−5776, https://doi.org/10.1175/JCLI-D-11-00555.1.
Chang, E. K. M., S. Lee, and K. L. Swanson, 2002: Storm track dynamics. J. Climate, 15, 2163−2183, https://doi.org/10.1175/1520-0442(2002)015<02163:STD>2.0.CO;2.
Chen, X., Z. Zhong, and W. Lu, 2017: Association of the poleward shift of East Asian subtropical upper-level jet with frequent tropical cyclone activities over the western North Pacific in summer. J. Climate, 30, 5597−5603, https://doi.org/10.1175/JCLI-D-16-0334.1.
Chia, H. H., and C. F. Ropelewski, 2002: The interannual variability in the genesis location of tropical cyclones in the northwest Pacific. J. Climate, 15, 2934−2944, https://doi.org/10.1175/1520-0442(2002)015<2934:TIVITG>2.0.CO;2.
Cordeira, J. M., F. M. Ralph, and B. J. Moore, 2013: The development and evolution of two atmospheric rivers in proximity to Western North Pacific tropical cyclones in October 2010. Mon. Wea. Rev., 141, 4234−4255, https://doi.org/10.1175/MWR-D-13-00019.1.
Deng. Y., and M. Mak, 2006: Nature of the differences in the intraseasonal variability of the Pacific and Atlantic storm tracks: A diagnostic study. J. Atmos. Sci., 63, 2602−2615, https://doi.org/10.1175/JAS3749.1.
Eichler, T., and W. Higgins, 2006: Climatology and ENSO-related variability of North American extratropical cyclone activity. J. Climate, 19, 2076−2093, https://doi.org/10.1175/JCLI3725.1.
Grams, C. M., and H. M. Archambault, 2016: The key role of diabatic outflow in amplifying the midlatitude flow: A representative case study of weather systems surrounding western North Pacific extratropical transition. Mon. Wea. Rev., 144, 3847−3869, https://doi.org/10.1175/MWR-D-15-0419.1.
Ha, Y., and Z. Zhong, 2014: Features of tropical cyclone landfalls over East Asia corresponding to three types of Pacific warming decaying phase. Chinese Science Bulletin, 59, 4130−4136, https://doi.org/10.1007/s11434-014-0582-1.
Ha, Y., Z. Zhong, Y. M. Zhu, and Y. J. Hu, 2013: Contributions of barotropic energy conversion to northwest Pacific tropical cyclone activity during ENSO. Mon. Wea. Rev., 141, 1337−1346, https://doi.org/10.1175/MWR-D-12-00084.1.
Harr, P. A., and J. M. Dea, 2009: Downstream development associated with the extratropical transition of tropical cyclones over the western North Pacific. Mon. Wea. Rev., 137, 1295−1319, https://doi.org/10.1175/2008MWR2558.1.
Harr, P. A., R. L. Elsberry, and T. F. Hogan, 2000: Extratropical transition of tropical cyclones over the western North Pacific. Part II: The impact of midlatitude circulation characteristics. Mon. Wea. Rev., 128, 2634−2653, https://doi.org/10.1175/1520-0493(2000)128<2634:ETOTCO>2.0.CO;2.
Harr, P. A., D. Anwender, and S. C. Jones, 2008: Predictability associated with the downstream impacts of the extratropical transition of tropical cyclones: Methodology and a case study of Typhoon Nabi (2005). Mon. Wea. Rev., 136, 3205−3225, https://doi.org/10.1175/2008MWR2248.1.
Hoskins, B. J., and K. I. Hodges, 2002: New perspectives on the Northern Hemisphere winter storm tracks. J. Atmos. Sci., 59, 1041−1061, https://doi.org/10.1175/1520-0469(2002)059<1041:NPOTNH>2.0.CO;2.
Kalnay, E., and Coauthors, 1996: The NCEP/NCAR 40-year reanalysis project. Bull. Amer. Meteor. Soc., 77, 437−472, https://doi.org/10.1175/1520-0477(1996)077<0437:TNYRP>2.0.CO;2.
Kawamura, R., and T. Ogasawara, 2006: On the role of typhoons in generating PJ teleconnection patterns over the western North Pacific in late summer. SOLA, 2, 37−40, https://doi.org/10.2151/sola.2006-010.
Keller, J. H., 2017: Amplification of the downstream wave train during extratropical transition: Sensitivity studies. Mon. Wea. Rev., 145, 1529−1548, https://doi.org/10.1175/MWR-D-16-0193.1.
Keller, J. H., and Coauthors, 2019: The extratropical transition of tropical cyclones. Part II: Interaction with the midlatitude flow, downstream impacts, and implications for predictability. Mon. Wea. Rev., 147, 1077−1106, https://doi.org/10.1175/MWR-D-17-0329.1.
Nakamura, H., 1992: Midwinter suppression of baroclinic wave activity in the Pacific. J. Atmos. Sci., 49, 1629−1642, https://doi.org/10.1175/1520-0469(1992)049<1629:MSOBWA>2.0.CO;2.
Nakamura, H., and T. Sampe, 2002: Trapping of synoptic-scale disturbances into the North-Pacific subtropical jet core in midwinter. Geophys. Res. Lett., 29, 8-1−8-4, https://doi.org/10.1029/2002GL015535.
Orlanski, I., 2005: A new look at the Pacific storm track variability: Sensitivity to tropical SSTs and to upstream seeding. J. Atmos. Sci., 62, 1367−1390, https://doi.org/10.1175/JAS3428.1.
Penny, S., G. H. Roe, and D. S. Battisti, 2010: The source of the midwinter suppression in storminess over the North Pacific. J. Climate, 23, 634−648, https://doi.org/10.1175/2009JCLI2904.1.
Ren, X. J., X. Q. Yang, and C. J. Chu, 2010: Seasonal variations of the synoptic-scale transient eddy activity and polar front jet over East Asia. J. Climate, 23, 3222−3233, https://doi.org/10.1175/2009JCLI3225.1.
Ren, X. J., X. Q. Yang, T. J. Zhou, and J. B. Fang, 2011: Diagnostic comparison of wintertime East Asian subtropical jet and polar-front jet: Large-scale characteristics and transient eddy activities. Acta Meteorologica Sinica, 25, 21−33, https://doi.org/10.1007/s13351-011-0002-2.
Sobel, A. H., and S. J. Camargo, 2005: Influence of western North Pacific tropical cyclones on their large-scale environment. J. Atmos. Sci., 62, 3396−3407, https://doi.org/10.1175/JAS3539.1.
Straus, D. M., and J. Shukla, 1997: Variations of midlatitude transient dynamics associated with ENSO. J. Atmos. Sci., 54, 777−790, https://doi.org/10.1175/1520-0469(1997)054<0777:VOMTDA>2.0.CO;2.
Taguchi, B., H. Nakamura, M. Nonaka, and S.-P. Xie, 2009: Influences of the Kuroshio/Oyashio Extensions on air–sea heat exchanges and storm-track activity as revealed in regional atmospheric model simulations for the 2003/04 cold season. J. Climate, 22, 6536−6560, https://doi.org/10.1175/2009JCLI2910.1.
Wang, B., and J. C. L. Chan, 2002: How strong ENSO events affect tropical storm activity over the western North Pacific. J. Climate, 15, 1643−1658, https://doi.org/10.1175/1520-0442(2002)015<1643:HSEEAT>2.0.CO;2.
Wang, B., B. Q. Xiang, and J.-Y. Lee, 2013: Subtropical high predictability establishes a promising way for monsoon and tropical storm predictions. Proceedings of the National Academy of Sciences of the United States of America, 110, 2718−2722, https://doi.org/10.1073/pnas.1214626110.
Xiao, C. L., and Y. C. Zhang, 2015: Projected changes of wintertime synoptic-scale transient eddy activities in the East Asian eddy-driven jet from CMIP5 experiments. Geophys. Res. Lett., 42, 6008−6013, https://doi.org/10.1002/2015GL064641.
Yao, Y., Z. Zhong, and X.-Q. Yang, 2016: Numerical experiments of the storm track sensitivity to oceanic frontal strength within the Kuroshio/Oyashio Extensions. J. Geophys. Res., 121, 2888−2900, https://doi.org/10.1002/2015JD024381.
Zhao, H. K., and C. Z. Wang, 2016: Interdecadal modulation on the relationship between ENSO and typhoon activity during the late season in the western North Pacific. Climate Dyn., 47, 315−328, https://doi.org/10.1007/s00382-015-2837-1.
Zhu, W. J., and Z. B. Sun, 1999: Influence of ENSO event on the maintenance of Pacific storm track in the northern winter. Adv. Atmos. Sci., 16, 630−640, https://doi.org/10.1007/s00376-999-0037-9.
Zurita-Gotor, P., and E. K. M. Chang, 2005: The impact of zonal propagation and seeding on the eddy–mean flow equilibrium of a zonally varying two-layer model. J. Atmos. Sci., 62, 2261−2273, https://doi.org/10.1175/JAS3473.1.