Brasseur, G. P., D. A. Hauglustaine, S. Walters, P. J. Rasch, J. F. Müller, C. Granier, and X. X. Tie, 1998: MOZART, a global chemical transport model for ozone and related chemical tracers: 1. Model description. J. Geophys. Res.: Atmos., 103, 28265−28289,
Cao, G. L., X. Y. Zhang, S. L. Gong, X. Q. An, and Y. Q. Wang, 2011: Emission inventories of primary particles and pollutant gases for China. Chinese Science Bulletin, 56, 781−788, https://doi.org/10.1007/s11434-011-4373-7.
Carmichael, G. R., A. Sandu, T. F. Chai, D. N. Daescu, E. M. Constantinescu, and Y. H. Tang, 2008a: Predicting air quality: Improvements through advanced methods to integrate models and measurements. J. Comput. Phys., 227, 3540−3571, https://doi.org/10.1016/j.jcp.2007.02.024.
Carmichael, G. R., and Coauthors, 2008b: MICS-Asia II: The model intercomparison study for Asia Phase II methodology and overview of findings. Atmos. Environ., 42, 3468−3490, https://doi.org/10.1016/j.atmosenv.2007.04.007.
Chang, J. S., R. A. Brost, I. S. A. Isaksen, S. Madronich, P. Middleton, W. R. Stockwell, and C. J. Walcek, 1987: A three-dimensional Eulerian acid deposition model: Physical concepts and formulation. J. Geophys. Res.: Atmos., 92, 14 681−14700,
Cheng, M. M., and Coauthors, 2017: Air pollutant emission from the underestimated households' coal consumption source in China. Science of the Total Environment, 580, 641−650, https://doi.org/10.1016/j.scitotenv.2016.12.143.
Dai, T., Y. M. Cheng, D. Goto, Y. R. Li, X. Tang, G. Y. Shi, and T. Nakajima, 2021: Revealing the sulfur dioxide emission reductions in China by assimilating surface observations in WRF-Chem. Atmospheric Chemistry and Physics, 21, 4357−4379, https://doi.org/10.5194/acp-21-4357-2021.
Feng, S. Z., and Coauthors, 2021: A Regional multi-Air Pollutant Assimilation System (RAPAS v1.0) for emission estimates: system development and application. Geosci. Model Dev. Discuss, 134, https://doi.org/10.5194/gmd-2021-134.
Feng, S. Z., F. Jiang, Z. Wu, H. M. Wang, W. M. Ju, and H. K. Wang, 2020: CO emissions inferred from surface CO observations over China in December 2013 and 2017. J. Geophys. ResearchRes.: Atmos., 125, e2019JD031808, https://doi.org/10.1029/2019JD031808.
Frey, H. C., R. Bharvirkar, and J. Y. Zheng, 1999: Quantitative analysis of variability and uncertainty in emissions estimation. Research Triangle Park.NC:North Carolina State University for the U.S.Environmental Protection Agency.
Gao, F., 2014: New ideas for environmental pollution control. Overview of Disaster Prevention, 6, 50−53. https://kns.cnki.net/kcms/detail/detail.aspx?dbcode=CJFD&dbname=CJFDLAST2015&filename=FZBL201406022&uniplatform=NZKPT&v=tqiT6HC-AVOnB4m6LZ0rxSVzD-DMIaAVplOR_DanUcBzO4lZ9A7fsE9m-fVxZBhQ. (in Chinese with English abstract)
Granier, C., and Coauthors, 2005: POET, a database of surface emissions of ozone precursors. [Available from http://www.aero.jussieu.fr/projet/ACCENT/POET.php.]
Granier, C., and Coauthors, 2011: Evolution of anthropogenic and biomass burning emissions of air pollutants at global and regional scales during the 1980–2010 period. Climatic Change, 109, 163−190, https://doi.org/10.1007/s10584-011-0154-1.
Guan, X., H. L. Nie, and L. L. Song, 2015: Analysis of Coal to Gas conversion in Beijing. District heating, 6, https://doi.org/10.16641/j.cnki.cn11-3241/tk.2015.6.005. (in Chinese with English abstract)
Hanna, S. R., J. C. Chang, and M. E. Fernau, 1998: Monte Carlo estimates of uncertainties in predictions by a photochemical grid model (UAM-IV) due to uncertainties in input variables. Atmos. Environ., 32, 3619−3628, https://doi.org/10.1016/S1352-2310(97)00419-6.
Hauglustaine, D. A., G. P. Brasseur, S. Walters, P. J. Rasch, J. F. Müller, L. K. Emmons, and M. A. Carroll, 1998: MOZART, a global chemical transport model for ozone and related chemical tracers: 2. Model results and evaluation. J. Geophys. Res.: Atmos., 103, 28291−28335,
Houweling, S., P. Bergamaschi, F. Chevallier, M. Heimann, T. Kaminski, M. Krol, A. M. Michalak, and P. Patra, 2017: Global inverse modeling of CH4 sources and sinks: An overview of methods. Atmospheric Chemistry and Physics, 17, 235−256, https://doi.org/10.5194/acp-17-235-2017.
Ji, D. S., and Coauthors, 2022: Environmental effects of China's coal ban policy: Results from in situ observations and model analysis in a typical rural area of the Beijing-Tianjin-Hebei region, China. Atmospheric Research, 268, 106015, https://doi.org/10.1016/j.atmosres.2022.106015.
Jiang, Y., Y. Jiang, X. Y. Tang, W. D. Ni, J. Y. Wang, and S. Hu, 2014: Relation between PM2.5 and Beijing district heating source in winter and its related policy suggestions. Energy of China, 28, 7−13, https://doi.org/10.3969/j.issn.1003-2355.2014.01.002. (in Chinese with English abstract
Kong, L., and Coauthors, 2019: Improved inversion of monthly ammonia emissions in China based on the Chinese ammonia monitoring network and ensemble Kalman filter. Environ. Sci. Technol., 53, 12529−12538,
Kong, L., and Coauthors, 2021: A 6-year-long (2013–2018) high-resolution air quality reanalysis dataset in China based on the assimilation of surface observations from CNEMC. Earth System Science Data, 13, 529−570, https://doi.org/10.5194/essd-13-529-2021.
Kopacz, M., and Coauthors, 2010: Global estimates of CO sources with high resolution by adjoint inversion of multiple satellite datasets (MOPITT, AIRS, SCIAMACHY, TES). Atmospheric Chemistry and Physics, 10, 855−876, https://doi.org/10.5194/acp-10-855-2010.
Koukouli, M. E., N. Theys, J. Y. Ding, I. Zyrichidou, B. Mijling, D. Balis, and R. J. Van Der A, 2018: Updated SO2 emission estimates over China using OMI/Aura observations. Atmospheric Measurement Techniques, 11, 1817−1832, https://doi.org/10.5194/amt-11-1817-2018.
Li, F., and Coauthors, 2019: Estimation of representative errors of surface observations of air pollutant concentrations based on high-density observation network over Beijing–Tianjin–Hebei Region. Chinese Journal of Atmospheric Sciences, 43, 277−284, https://doi.org/10.3878/j.issn.1006-9895.1804.17267. (in Chinese with English abstract
Li, M., and Coauthors, 2017a: MIX: A mosaic Asian anthropogenic emission inventory under the international collaboration framework of the MICS-Asia and HTAP. Atmospheric Chemistry and Physics, 17, 935−963, https://doi.org/10.5194/acp-17-935-2017.
Li, M., and Coauthors, 2017b: Anthropogenic emission inventories in China: A review. National Science Review, 4, 834−866, https://doi.org/10.1093/nsr/nwx150.
Li, W. J., and Coauthors, 2020: Air quality improvement in response to intensified control strategies in Beijing during 2013–2019. Science of the Total Environment, 744, 140776, https://doi.org/10.1016/j.scitotenv.2020.140776.
Liu, M. X., and Coauthors, 2018. Rapid SO2 emission reductions significantly increase tropospheric ammonia concentrations over the North China Plain. Atmospheric Chemistry and Physics, 18, 17933−17943,
Liu, P. F., and Coauthors, 2017: The contribution of residential coal combustion to atmospheric PM2.5 in northern China during winter. Atmospheric Chemistry and Physics, 17, 11503−11520,
Lu, M. M., and Coauthors, 2017: Investigating the spatial-temporal distribution of the PM2.5 over Wuhan in 2014 and quantifying the contributions from different source regions with both observation and model. Acta Scientiae Circumstantiae, 37(11), 4227−4240, https://doi.org/10.13671/j.hjkxxb.2017.0178. (in Chinese with English abstract
Lu, X., and Coauthors, 2019: Exploring 2016–2017 surface ozone pollution over China: Source contributions and meteorological influences. Atmospheric Chemistry and Physics, 19(12), 8339−8361, https://doi.org/10.5194/acp-2019-98.
Lu, X., and Coauthors, 2020: Progress of air pollution control in China and its challenges and opportunities in the ecological civilization era. Engineering, 6, 1423−1431, https://doi.org/10.1016/j.eng.2020.03.014.
Ma, J., and J. A. Van Aardenne, 2004: Impact of different emission inventories on simulated tropospheric ozone over China: A regional chemical transport model evaluation. Atmospheric Chemistry and Physics, 4, 877−887, https://doi.org/10.5194/acp-4-877-2004.
Meng, K., and Coauthors, 2018: Spatio-temporal variations in SO2 and NO2 emissions caused by heating over the Beijing-Tianjin-Hebei Region constrained by an adaptive nudging method with OMI data. Science of the Total Environment, 642, 543−552, https://doi.org/10.1016/j.scitotenv.2018.06.021.
Miyazaki, K., and Coauthors:2020: An updated tropospheric chemistry eanalysis and emission estimates, TCR-2, for 2005-2018. EARTH SYSTEM SCIENCE DATA, 12, 2223. https://doi.org/10.5194/essd-2020-30.
Price, C., J. Penner, and M. Prather, 1997: NOX from lightning: 1. Global distribution based on lightning physics. J. Geophys. Res.: Atmos., 102, 5929−5941, https://doi.org/10.1029/96JD03504.
Qu, Z., and Coauthors, 2019: Hybrid mass balance/4D‐Var joint inversion of NOX and SO2 emissions in East Asia. Journal of Geophysical Research: Atmospheres, 124, 8203–8224.
Qu, L. L., S. J. Liu, L. L. Ma, Z. Z. Zhang, J. H. Du, Y. H. Zhou, and F. Meng, 2020: Evaluating the meteorological normalized PM2.5 trend (2014–2019) in the “2+26” region of China using an ensemble learning technique. Environmental Pollution, 266, 115346, https://doi.org/10.1016/j.envpol.2020.115346.
Randerson, J. T., G. R. Van Der Werf, L. Giglio, G. J. Collatz, and P. S. Kasibhatla, 2017: Global Fire Emissions Database, Version 4.1 (GFEDv4). ORNL Distributed Active Archive Center, [Available from https://doi.org/10.3334/ORNLDAAC/1293.]
Saikawa, E., and Coauthors, 2017: Comparison of emissions inventories of anthropogenic air pollutants and greenhouse gases in China. Atmos. Chem. Phys., 17, 6393−6421, https://doi.org/10.5194/acp-17-6393-2017.
Shen, Y., F. Jiang, S. Z. Feng, Y. H. Zheng, Z. Cai, and X. Lyu, 2021: Impact of weather and emission changes on NO2 concentrations in China during 2014−2019. Environmental Pollution, 269, 116163, https://doi.org/10.1016/J.ENVPOL.2020.116163.
Sindelarova, K., and Coauthors, 2014: Global data set of biogenic VOC emissions calculated by the MEGAN model over the last 30 years. Atmospheric Chemistry and Physics, 14, 9317−9341, https://doi.org/10.5194/acp-14-9317-2014.
Sakov, P. and P. R. Oke, 2008: A deterministic formulation of the ensemble Kalman filter: an alternative to ensemble square root filters. Tellus A: Dynamic Meteorology and Oceanography, 60, 361−371, https://doi.org/10.1111/j.1600-0870.2007.00299.x.
Streets, D. G., and Coauthors, 2013: Emissions estimation from satellite retrievals: A review of current capability. Atmos. Environ., 77, 1011−1042, https://doi.org/10.1016/j.atmosenv.2013.05.051.
Tang, X., and Coauthors, 2013: Inversion of CO emissions over Beijing and its surrounding areas with ensemble Kalman filter. Atmos. Environ., 81, 676−686, https://doi.org/10.1016/j.atmosenv.2013.08.051.
van der Werf, G. R., and Coauthors, 2010: Global fire emissions and the contribution of deforestation, savanna, forest, agricultural, and peat fires (1997–2009). Atmospheric Chemistry and Physics, 10, 11707−11735,
Wang, J. K., H. D. Zhang, B. H. Zhang, and X. L. Yang, 2018: Application of data assimilation method in updating emission inventory. Journal of Environmental Engineering Technology, 8, 577−585, https://doi.org/10.3969/j.issn.1674-991X.2018.06.077. (in Chinese with English abstract
Wang, X. G., and C. H. Bishop, 2003: A comparison of breeding and ensemble transform Kalman filter ensemble forecast schemes. J. Atmos. Sci., 60, 1140−1158, https://doi.org/10.1175/1520-0469(2003)060<1140:ACOBAE>2.0.CO;2.
Wang, Y., J. Wang, X. G. Xu, D. K. Henze, Y. X. Wang, and Z. Qu, 2016: A new approach for monthly updates of anthropogenic sulfur dioxide emissions from space: Application to China and implications for air quality forecasts. Geophys. Res. Lett., 43, 9931−9938, https://doi.org/10.1002/2016GL070204.
Wang, Z. F., F. Y. Xie, X. Q. Wang, J. L. An, and J. Zhu, 2006: Development and application of nested air quality prediction modeling system. Chinese Journal of Atmospheric Sciences, 30, 778−790, https://doi.org/10.3878/j.issn.1006-9895.2006.05.07. (in Chinese with English abstract
Wu, H. J., X. Tang, Z. F. Wang, L. Wu, M. M. Lu, L. F. Wei, and J. Zhu, 2018: Probabilistic automatic outlier detection for surface air quality measurements from the China national environmental monitoring network. Adv. Atmos. Sci., 35, 1522−1532, https://doi.org/10.1007/s00376-018-8067-9.
Wu, H. J., W. Lin, L. Kong, X. Tang, W. Wang, Z. F. Wang, and S. X. Chen, 2021: A fast emission inversion scheme based on ensemble optimal interpolation. Climatic and Environmental Research, 26, 191−201, https://doi.org/10.3878/j.issn.1006-9585.2020.20043. (in Chinese with English abstract
Xu, X. D., L. Xie, X. H. Cheng, J. M. Xu, X. J. Zhou, and G. A. Ding, 2008: Application of an adaptive nudging scheme in air quality forecasting in China. J. Appl. Meteorol. Climatol., 47, 2105−2114, https://doi.org/10.1175/2008JAMC1737.1.
Xue, W. B., Y. L. Xu, X. R. Shi, and Y. Lei, 2021: Atmospheric environment management in China: Progress and outlook. Chinese Journal of Environmental Management, 13, 52−60, https://doi.org/10.16868/j.cnki.1674-6252.2021.05.052. (in Chinese with English abstract
Yan, X. Y., H. Akimoto, and T. Ohara, 2003: Estimation of nitrous oxide, nitric oxide and ammonia emissions from croplands in East, Southeast and South Asia. Global Change Biology, 9, 1080−1096, https://doi.org/10.1046/j.1365-2486.2003.00649.x.
Zaveri, R. A., and L. K. Peters, 1999: A new lumped structure photochemical mechanism for large-scale applications. J. Geophys. Res.: Atmos., 104, 30387−30415,
Zhang, L., and Coauthors, 2018: Agricultural ammonia emissions in China: Reconciling bottom-up and top-down estimates. Atmospheric Chemistry and Physics, 18, 339−355, https://doi.org/10.5194/acp-18-339-2018.
Zhang, Q., and Coauthors, 2009: Asian emissions in 2006 for the NASA INTEX-B mission. Atmospheric Chemistry and Physics, 9, 5131−5153, https://doi.org/10.5194/acp-9-5131-2009.
Zhang, Q., and Coauthors, 2019: Drivers of improved PM2.5 air quality in China from 2013 to 2017. Proceedings of the National Academy of Sciences of the United States of America, 116, 24463−24469,
Zhang, Y. B., and Coauthors, 2021: City-level air quality improvement in the Beijing-Tianjin-Hebei region from 2016/17 to 2017/18 heating seasons: Attributions and process analysis. Environmental Pollution, 274, 116523, https://doi.org/10.1016/j.envpol.2021.116523.
Zhang, Z. Z., W. X. Wang, M. M. Cheng, S. J. Liu, J. Xu, Y. J. He, and F. Meng, 2017: The contribution of residential coal combustion to PM2.5 pollution over China’s Beijing-Tianjin-Hebei region in winter. Atmos. Environ., 159, 147−161, https://doi.org/10.1016/j.atmosenv.2017.03.054.
Zhao, S. M., and Coauthors, 2020: Effect of the “coal to gas” project on atmospheric NOX during the heating period at a suburban site between Beijing and Tianjin. Atmospheric Research, 241, 104977, https://doi.org/10.1016/j.atmosres.2020.104977.
Zheng, B., and Coauthors, 2018a: Rapid decline in carbon monoxide emissions and export from East Asia between years 2005 and 2016. Environmental Research Letters, 13, 044007, https://doi.org/10.1088/1748-9326/aab2b3.
Zheng, B., and Coauthors, 2018b: Trends in China's anthropogenic emissions since 2010 as the consequence of clean air actions. Atmospheric Chemistry and Physics, 18, 14095−14111,
Zheng, B., and Coauthors, 2021: Mapping anthropogenic emissions in China at 1 km spatial resolution and its application in air quality modeling. Science Bulletin, 66, 612−620, https://doi.org/10.1016/j.scib.2020.12.008.
Zheng, H. T., B. Zhao, and S. X. Wang, 2020: Air pollutant emissions from steel and coking industries and their impacts on ambient air quality in China. Environmental Impact Assessment, 42, 16−21, 43, https://doi.org/10.14068/j.ceia.2020.04.004. (in Chinese with English abstract)