Bailey, M. P., and J. Hallett, 2009: A comprehensive habit diagram for atmospheric ice crystals: Confirmation from the laboratory, AIRS II, and other field studies. J. Atmos. Sci., 66, 2888−2899, https://doi.org/10.1175/2009JAS2883.1.
Battaglia, A., E. Rustemeier, A. Tokay, U. Blahak, and C. Simmer, 2010: PARSIVEL snow observations: A critical assessment. J. Atmos. Oceanic Technol., 27, 333−344, https://doi.org/10.1175/2009JTECHA1332.1.
Bringi, V. N., V. Chandrasekar, J. Hubbert, E. Gorgucci, W. L. Randeu, and M. Schoenhuber, 2003: Raindrop size distribution in different climatic regimes from disdrometer and dual-polarized radar analysis. J. Atmos. Sci., 60, 354−365, https://doi.org/10.1175/1520-0469(2003)060<0354:RSDIDC>2.0.CO;2.
Bringi, V. N., M. Thurai, K. Nakagawa, G. J. Huang, T. Kobayashi, A. Adachi, H. Hanado, and S. Sekizawa, 2006: Rainfall estimation from C-band polarimetric radar in Okinawa, Japan: Comparisons with 2D-video disdrometer and 400MHz wind profiler. J. Meteor. Soc. Japan, 84, 705−724, https://doi.org/10.2151/jmsj.84.705.
Carey, L. D., and S. A. Rutledge, 2000: The relationship between precipitation and lightning in tropical island convection: A C-band polarimetric radar study. Mon. Wea. Rev., 128, 2687−2710, https://doi.org/10.1175/1520-0493(2000)128<2687:TRBPAL>2.0.CO;2.
Carr, N., P. E. Kirstetter, J. J. Gourley, and Y. Hong, 2017: Polarimetric signatures of midlatitude warm-rain precipitation events. J. Appl. Meteorol. Climatol., 56, 697−711, https://doi.org/10.1175/JAMC-D-16-0164.1.
Chang, W.-Y., W.-C. Lee, and Y.-C. Liou, 2015: The kinematic and microphysical characteristics and associated precipitation efficiency of subtropical convection during SoWMEX/TiMREX. Mon. Wea. Rev., 143, 317−340, https://doi.org/10.1175/MWR-D-14-00081.1.
Chang, Y., X. L. Guo, J. Tang, and G. X. Lu, 2019: Aircraft measurement campaign on summer cloud microphysical properties over the Tibetan Plateau. Scientific Reports, 9, 4912, https://doi.org/10.1038/s41598-019-41514-5.
Chen, B. J., J. Yang, and J. P. Pu, 2013: Statistical characteristics of raindrop size distribution in the Meiyu season observed in Eastern China. J. Meteor. Soc. Japan, 91, 215−227, https://doi.org/10.2151/jmsj.2013-208.
Chen, F. J., X. Y. Zheng, H. Y. Wen, and Y. Yuan, 2022: Microphysics of convective and stratiform precipitation during the summer monsoon season over the Yangtze–Huaihe River Valley, China. Journal of Hydrometeorology, 23, 239−252, https://doi.org/10.1175/JHM-D-21-0078.1.
Chen, G., and Coauthors, 2019: Microphysical characteristics of three convective events with intense rainfall observed by polarimetric radar and disdrometer in Eastern China. Remote Sensing, 11, 2004, https://doi.org/10.3390/rs11172004.
Chen, Y., 2009: The characteristic of drop size distribution during SoWMEX. M.S. thesis, Institute of Atmospheric Physics, NCU, Chungli, Taiwan, 68 pp. (in Chinese)
Clark, R. T., X. Q. Dong, C.-H. Ho, J. H. Sun, H. L. Yuan, and T. Takemi, 2021: Preface to the special issue on summer 2020: Record rainfall in Asia—Mechanisms, predictability and impacts. Adv. Atmos. Sci., 38, 1977−1979, https://doi.org/10.1007/s00376-021-1010-5.
Dawson, D. T., M. Xue, J. A. Milbrandt, and M. K. Yau, 2010: Comparison of evaporation and cold pool development between single-moment and multimoment bulk microphysics schemes in idealized simulations of tornadic thunderstorms. Mon. Wea. Rev., 138, 1152−1171, https://doi.org/10.1175/2009MWR2956.1.
Ding, Y. H., and J. C. L. Chan, 2005: The East Asian summer monsoon: An overview. Meteorol. Atmos. Phys., 89, 117−142, https://doi.org/10.1007/s00703-005-0125-z.
Ding, Y. H., Y. J. Liu, Y. Sun, and Y. F. Song, 2010: Weakening of the Asian summer monsoon and its impact on the precipitation pattern in China. International Journal of Water Resources Development, 26, 423−439, https://doi.org/10.1080/07900627.2010.492607.
Ding, Y. H., Y. Y. Liu, and Z.-Z. Hu, 2021: The record-breaking Mei-yu in 2020 and associated atmospheric circulation and tropical SST anomalies. Adv. Atmos. Sci., 38, 1980−1993, https://doi.org/10.1007/s00376-021-0361-2.
Fu, Z. K., X. Q. Dong, L. L. Zhou, W. J. Cui, J. Y. Wang, R. Wan, L. Leng, and B. K. Xi, 2020: Statistical characteristics of raindrop size distributions and parameters in Central China during the Meiyu seasons. J. Geophys. Res.: Atmos., 125, e2019JD031954, https://doi.org/10.1029/2019JD031954.
Hersbach, H., and Coauthors, 2020: The ERA5 global reanalysis. Quart. J. Roy. Meteor. Soc., 146, 1999−2049, https://doi.org/10.1002/qj.3803.
Hu, X., W. H. Ai, J. Q. Qiao, S. S. Hu, D. Han, and W. Yan, 2022a: Microphysics of Summer Precipitation Over Yangtze-Huai River Valley region in China Revealed by GPM DPR Observation. Earth and Space Science, 9, e2021EA002021, https://doi.org/10.1029/2021EA002021.
Hu, Y. J., W. Zhang, Y. X. Zhang, and L. Wen, 2022b: Comparative analysis of raindrop size distribution characteristics before and after monsoon onset in southern coast of Fujian province in 2018−2019. Acta Meteorologica Sinica, 80, 618−631, https://doi.org/10.11676/qxxb2022.045. (in Chinese with English abstract
Huang, H., K. Zhao, P. L. Fu, H. N. Chen, G. Chen, and Y. Zhang, 2021: Validation of precipitation measurements from the dual-frequency precipitation radar onboard the GPM core observatory using a polarimetric radar in South China. IEEE Trans. Geosci. Remote Sens., 60, 4104216, https://doi.org/10.1109/TGRS.2021.3118601.
Huo, Z. Y., Z. Ruan, M. Wei, R. S. Ge, F. Li, and Y. Ruan, 2019: Statistical characteristics of raindrop size distribution in South China summer based on the vertical structure derived from VPR-CFMCW. Atmospheric Research, 222, 47−61, https://doi.org/10.1016/j.atmosres.2019.01.022.
Iguchi, T., and Coauthors, 2021: GPM/DPR level-2 algorithm theoretical basis document. NASA Goddard Space Flight Center.
Jin, Q., Y. Yuan, H. J. Liu, C. E. Shi, and J. B. Li, 2015: Analysis of microphysical characteristics of the raindrop spectrum over the area between the Yangtze River and the Huaihe River during summer. Acta Meteorologica Sinica, 73, 778−788, https://doi.org/10.11676/qxxb2015.036. (in Chinese with English abstract
Kumjian, M. R., and A. V. Ryzhkov, 2012: The impact of size sorting on the polarimetric radar variables. J. Atmos. Sci., 69, 2042−2060, https://doi.org/10.1175/JAS-D-11-0125.1.
Lai, R. Z., X. T. Liu, S. Hu, H. Xiao, F. Xia, L. Feng, and H. Q. Li, 2022: Raindrop size distribution characteristic differences during the dry and wet seasons in South China. Atmospheric Research, 266, 105947, https://doi.org/10.1016/j.atmosres.2021.105947.
Lane, J., T. Kasparis, S. Michaelides, and P. Metzger, 2018: A phenomenological relationship between vertical air motion and disdrometer derived A-b coefficients. Atmospheric Research, 208, 94−105, https://doi.org/10.1016/j.atmosres.2017.07.011.
Li, J. Y., and J. Y. Mao, 2019: Factors controlling the interannual variation of 30–60-day boreal summer intraseasonal oscillation over the Asian summer monsoon region. Climate Dyn., 52, 1651−1672, https://doi.org/10.1007/s00382-018-4216-1.
Li, L., C. W. Zhu, R. H. Zhang, and B. Q. Liu, 2021: Roles of the Tibetan Plateau vortices in the record Meiyu rainfall in 2020. Atmospheric Science Letters, 22, e1017, https://doi.org/10.1002/asl.1017.
Liu, B. Q., Y. H. Yan, C. W. Zhu, S. M. Ma, and J. Y. Li, 2020: Record-breaking Meiyu rainfall around the Yangtze River in 2020 regulated by the subseasonal phase transition of the North Atlantic Oscillation. Geophys. Res. Lett., 47, e2020GL090342, https://doi.org/10.1029/2020GL090342.
Milbrandt, J. A., and M. K. Yau, 2005: A multimoment bulk microphysics parameterization. Part II: A proposed three-moment closure and scheme description. J. Atmos. Sci., 62, 3065−3081, https://doi.org/10.1175/JAS3535.1.
Murali Krishna, U. V., S. K. Das, E. G. Sulochana, U. Bhowmik, S. M. Deshpande, and G. Pandithurai, 2021: Statistical characteristics of raindrop size distribution over the Western Ghats of India: Wet versus dry spells of the Indian summer monsoon. Atmospheric Chemistry and Physics, 21, 4741−4757, https://doi.org/10.5194/acp-21-4741-2021.
Niu, R. Y., P. M. Zhai, and G. R. Tan, 2021: Anomalous features of extreme Meiyu in 2020 over the Yangtze-Huai River basin and attribution to large-scale circulations. J. Meteor. Res., 35, 799−814, https://doi.org/10.1007/s13351-021-1018-x.
Oue, M., H. Uyeda, and D. I. Lee, 2011: Raindrop size distribution parameters estimated from polarimetric radar variables in convective cells around Okinawa Island during the Baiu period. Asia-Pacific Journal of Atmospheric Sciences, 47, 33−44, https://doi.org/10.1007/s13143-011-1003-x.
Oue, M., T. Ohigashi, K. Tsuboki, and E. Nakakita, 2015: Vertical distribution of precipitation particles in Baiu frontal stratiform intense rainfall around Okinawa Island, Japan. J. Geophys. Res.: Atmos., 120, 5622−5637, https://doi.org/10.1002/2014JD022712.
Peng, S., 2020: 1-km monthly precipitation dataset for China (1901−2020). A Big Earth Data Platform for Three Poles, https://doi.org/10.5281/zenodo.3185722. [Available online from http://www.tpdc.ac.cn/zh-hans/data/faae7605-a0f2-4d18-b28f-5cee413766a2/]
Qiao, S. B., and Coauthors, 2021: The longest 2020 Meiyu season over the past 60 years: Subseasonal perspective and its predictions. Geophys. Res. Lett., 48, e2021GL093596, https://doi.org/10.1029/2021GL093596.
Raut, B. A., and Coauthors, 2021: Microphysical origin of raindrop size distributions during the Indian monsoon. Geophys. Res. Lett., 48, e2021GL093581, https://doi.org/10.1029/2021GL093581.
Rosenfeld, D., and C. W. Ulbrich, 2003: Cloud microphysical properties, processes, and rainfall estimation opportunities. Meteor. Monogr., 30, 237−258, https://doi.org/10.1175/0065-9401(2003)030<0237:CMPPAR>2.0.CO;2.
Ryu, J., H. J. Song, B. J. Sohn, and C. Liu, 2021: Global distribution of three types of drop size distribution representing heavy rainfall from GPM/DPR measurements. Geophys. Res. Lett., 48, e2020GL090871, https://doi.org/10.1029/2020GL090871.
Seela, B. K., J. Janapati, P. L. Lin, K. K. Reddy, R. Shirooka, and P. K. Wang, 2017: A comparison study of summer season raindrop size distribution between Palau and Taiwan, two Islands in Western Pacific. J. Geophys. Res.: Atmos., 122, 11 787−11 805, https://doi.org/10.1002/2017JD026816.
Seto, S., T. Iguchi, R. Meneghini, J. Awaka, T. Kubota, T. Masaki, and N. Takahashi, 2021: The precipitation rate retrieval algorithms for the GPM Dual-frequency Precipitation Radar. J. Meteor. Soc. Japan, 99, 205−237, https://doi.org/10.2151/jmsj.2021-011.
Shusse, Y., K. Nakagawa, N. Takahashi, S. Satoh, and T. Iguchi, 2009: Characteristics of polarimetric radar variables in three types of rainfalls in a Baiu front event over the East China Sea. J. Meteor. Soc. Japan, 87, 865−875, https://doi.org/10.2151/jmsj.87.865.
Sun, Y. T., X. Q. Dong, W. J. Cui, Z. M. Zhou, Z. K. Fu, L. L. Zhou, Y. Deng, and C. G. Cui, 2020: Vertical structures of typical meiyu precipitation events retrieved from GPM-DPR. J. Geophys. Res.: Atmos., 125, e2019JD031466, https://doi.org/10.1029/2019JD031466.
Takaya, Y., I. Ishikawa, C. Kobayashi, H. Endo, and T. Ose, 2020: Enhanced Meiyu-Baiu rainfall in early summer 2020: Aftermath of the 2019 super IOD event. Geophys. Res. Lett., 47, e2020GL090671, https://doi.org/10.1029/2020GL090671.
Tang, Q., H. Xiao, C. W. Guo, and L. Feng, 2014: Characteristics of the raindrop size distributions and their retrieved polarimetric radar parameters in northern and southern China. Atmospheric Research, 135−136, 59−75, https://doi.org/10.1016/j.atmosres.2013.08.003.
Tao, S.-Y., and L.-X. Chen, 1987: A review of recent research on the East Asian summer monsoon in China. Monsoon Meteorology, C.-P. Chang and T. N. Krishnamurti, Eds., Oxford Universtiy Press, 60−92.
Thurai, M., V. N. Bringi, and P. T. May, 2010: CPOL radar-derived drop size distribution statistics of stratiform and convective rain for two regimes in Darwin, Australia. J. Atmos. Oceanic Technol., 27, 932−942, https://doi.org/10.1175/2010JTECHA1349.1.
Tokay, A., and D. A. Short, 1996: Evidence from tropical raindrop spectra of the origin of rain from stratiform versus convective clouds. J. Appl. Meteorol., 35, 355−371, https://doi.org/10.1175/1520-0450(1996)035<0355:EFTRSO>2.0.CO;2.
Tokay, A., W. A. Petersen, P. Gatlin, and M. Wingo, 2013: Comparison of raindrop size distribution measurements by collocated disdrometers. J. Atmos. Oceanic Technol., 30, 1672−1690, https://doi.org/10.1175/JTECH-D-12-00163.1.
Tokay, A., D. B. Wolff, and W. A. Petersen, 2014: Evaluation of the new version of the laser-optical disdrometer, OTT Parsivel2. J. Atmos. Oceanic Technol., 31, 1276−1288, https://doi.org/10.1175/JTECH-D-13-00174.1.
Uijlenhoet, R., M. Steiner, and J. A. Smith, 2003: Variability of raindrop size distributions in a squall line and implications for radar rainfall estimation. Journal of Hydrometeorology, 4, 43−61, https://doi.org/10.1175/1525-7541(2003)004<0043:VORSDI>2.0.CO;2.
Vivekanandan, J., G. F. Zhang, and E. Brandes, 2004: Polarimetric radar estimators based on a constrained gamma drop size distribution model. J. Appl. Meteorol., 43, 217−230, https://doi.org/10.1175/1520-0450(2004)043<0217:PREBOA>2.0.CO;2.
Wang, G. L., R. Li, J. S. Sun, X. D. Xu, R. R. Zhou, and L. P. Liu, 2022: Comparative analysis of the characteristics of rainy season raindrop size distributions in two typical regions of the Tibetan Plateau. Adv. Atmos. Sci., 39, 1062−1078, https://doi.org/10.1007/s00376-021-1135-6.
Wang, J., Y. J. Liu, Y. H. Ding, and Z. L. Wu, 2021a: Towards influence of Arabian Sea SST anomalies on the withdrawal date of Meiyu over the Yangtze-Huaihe River basin. Atmospheric Research, 249, 105340, https://doi.org/10.1016/j.atmosres.2020.105340.
Wang, L. C., X. G. Sun, X. Q. Yang, L. F. Tao, and Z. Q. Zhang, 2021b: Contribution of water vapor to the record-breaking extreme Meiyu rainfall along the Yangtze River valley in 2020. J. Meteor. Res., 35, 557−570, https://doi.org/10.1007/s13351-021-1030-1.
Wen, L., K. Zhao, G. F. Zhang, M. Xue, B. W. Zhou, S. Liu, and X. C. Chen, 2016: Statistical characteristics of raindrop size distributions observed in East China during the Asian Summer Monsoon Season using 2-D video disdrometer and micro rain radar data. J. Geophys. Res.: Atmos., 121, 2265−2282, https://doi.org/10.1002/2015JD024160.
Wen, J., and Coauthors, 2017a: Evolution of microphysical structure of a subtropical squall line observed by a polarimetric radar and a disdrometer during OPACC in Eastern China. J. Geophys. Res.: Atmos., 122, 8033−8050, https://doi.org/10.1002/2016JD026346.
Wen, L., K. Zhao, G. F. Zhang, S. Liu, and G. Chen, 2017b: Impacts of instrument limitations on estimated raindrop size distribution, radar parameters, and model microphysics during Mei-Yu season in East China. J. Atmos. Oceanic Technol., 34, 1021−1037, https://doi.org/10.1175/JTECH-D-16-0225.1.
Wen, L., and Coauthors, 2018: Drop size distribution characteristics of seven typhoons in China. J. Geophys. Res.: Atmos., 123, 6529−6548, https://doi.org/10.1029/2017JD027950.
Wen, L., K. Zhao, M. Y. Wang, and G. F. Zhang, 2019: Seasonal variations of observed raindrop size distribution in East China. Adv. Atmos. Sci., 36, 346−362, https://doi.org/10.1007/s00376-018-8107-5.
Wen, L., K. Zhao, Z. L. Yang, H. N. Chen, H. Huang, G. Chen, and Z. W. Yang, 2020: Microphysics of stratiform and convective precipitation during Meiyu season in Eastern China. J. Geophys. Res.: Atmos., 125, e2020JD032677, https://doi.org/10.1029/2020JD032677.
Zhang, A. S., and Coauthors, 2019a: Statistical characteristics of raindrop size distribution in the monsoon season observed in Southern China. Remote Sensing, 11, 432, https://doi.org/10.3390/rs11040432.
Zhang, G., J. Vivekanandan, and E. Brandes, 2001: A method for estimating rain rate and drop size distribution from polarimetric radar measurements. IEEE Trans. Geosci. Remote Sens., 39, 830−841, https://doi.org/10.1109/36.917906.
Zhang, G. F., M. Xue, Q. Cao, and D. Dawson, 2008: Diagnosing the intercept parameter for exponential raindrop size distribution based on video disdrometer observations: Model development. J. Appl. Meteorol. Climatol., 47, 2983−2992, https://doi.org/10.1175/2008JAMC1876.1.
Zhang, G. F., and Coauthors, 2019b: Current status and future challenges of weather radar polarimetry: Bridging the gap between radar meteorology/hydrology/engineering and numerical weather prediction. Adv. Atmos. Sci., 36, 571−588, https://doi.org/10.1007/s00376-019-8172-4.
Zhang, W. J., Z. C. Huang, F. Jiang, M. F. Stuecker, G. S. Chen, and F. F. Jin, 2021: Exceptionally persistent Madden-Julian Oscillation activity contributes to the extreme 2020 East Asian summer monsoon rainfall. Geophys. Res. Lett., 48, e2020GL091588, https://doi.org/10.1029/2020GL091588.
Zheng, H. P., Y. Zhang, L. F. Zhang, H. C. Lei, and Z. H. Wu, 2021: Precipitation microphysical processes in the inner rainband of tropical cyclone Kajiki (2019) over the South China Sea revealed by polarimetric radar. Adv. Atmos. Sci., 38, 65−80, https://doi.org/10.1007/s00376-020-0179-3.
Zhou, Z.-Q., S.-P. Xie, and R. H. Zhang, 2021: Historic Yangtze flooding of 2020 tied to extreme Indian Ocean conditions. Proceedings of the National Academy of Sciences of the United States of America, 118, e2022255118, https://doi.org/10.1073/pnas.2022255118.