Asai, T., 1970a: Stability of a plane parallel flow with variable vertical shear and unstable stratification. J. Meteor. Soc. Japan, 48(2), 129−139, https://doi.org/10.2151/jmsj1965.48.2_129.
Asai, T., 1970b: Three-dimensional features of thermal convection in a plane couette flow. J. Meteor. Soc. Japan, 48(1), 18−29, https://doi.org/10.2151/jmsj1965.48.1_18.
Atkinson, B. W., and J. W. Zhang, 1996: Mesoscale shallow convection in the atmosphere. Rev. Geophys., 34(4), 403−431, https://doi.org/10.1029/96RG02623.
Buizza, R., and Coauthors, 2018: The development and evaluation process followed at ECMWF to upgrade the Integrated Forecasting System (IFS). ECMWF Technical Memoranda 829.
Byrkjedal, Ø., I. Esau, and N. G. Kvamstø, 2008: Sensitivity of simulated wintertime Arctic atmosphere to vertical resolution in the ARPEGE/IFS model. Climate Dyn., 30(7−8), 687−701, https://doi.org/10.1007/s00382-007-0316-z.
Cheng, A. N., K.-M. Xu, and B. Stevens, 2010: Effects of resolution on the simulation of boundary‐layer clouds and the partition of kinetic energy to subgrid scales. Journal of Advances in Modeling Earth Systems, 2(1), 3, https://doi.org/10.3894/JAMES.2010.2.3.
de Boer, G., and Coauthors, 2014: Near-surface meteorology during the Arctic Summer Cloud Ocean Study (ASCOS): Evaluation of reanalyses and global climate models. Atmospheric Chemistry and Physics, 14(1), 427−445, https://doi.org/10.5194/acp-14-427-2014.
Deardorff, J. W., 1972: Numerical investigation of neutral and unstable planetary boundary layers. J. Atmos. Sci., 29(1), 91−115, https://doi.org/10.1175/1520-0469(1972)029<0091:NIONAU>2.0.CO;2.
Deardorff, J. W., 1980: Stratocumulus-capped mixed layers derived from a three-dimensional model. Bound.-Layer Meteorol., 18, 495−527, https://doi.org/10.1007/BF00119502.
Fan, J. W., M. Ovtchinnikov, J. M. Comstock, S. A. McFarlane, and A. Khain, 2009: Ice formation in Arctic mixed-phase clouds: Insights from a 3-D cloud-resolving model with size-resolved aerosol and cloud microphysics. J. Geophys. Res., 114(D4), D04205, https://doi.org/10.1029/2008JD010782.
Field, P. R., and Coauthors, 2017: Exploring the convective grey zone with regional simulations of a cold air outbreak. Quart. J. Roy. Meteor. Soc., 143(707), 2537−2555, https://doi.org/10.1002/qj.3105.
Gao, Y., L. R. Leung, C. Zhao, and S. Hagos, 2017: Sensitivity of U. S. summer precipitation to model resolution and convective parameterizations across gray zone resolutions. J. Geophys. Res., 122(5), 2714−2733, https://doi.org/10.1002/2016JD025896.
Glendening, J. W., 1996: Lineal eddy features under strong shear conditions. J. Atmos. Sci., 53(23), 3430−3449, https://doi.org/10.1175/1520-0469(1996)053<3430:LEFUSS>2.0.CO;2.
Green, B. W., and F. Q. Zhang, 2015: Numerical simulations of Hurricane Katrina (2005) in the turbulent gray zone. Journal of Advances in Modeling Earth Systems, 7, 142−161, https://doi.org/10.1002/2014MS000399.
Gryschka, M., and S. Raasch, 2005: Roll convection during a cold air outbreak: A large eddy simulation with stationary model domain. Geophys. Res. Lett., 32(14), L14805, https://doi.org/10.1029/2005GL022872.
Harrington, J. Y., and P. Q. Olsson, 2001: An LES study of ice microphysical influences on roll cloud structure and dynamics during off-ice flow. Proc. 6th Conf. on Polar Meteorology and Oceanography, San Diego, CA, American Meteorological Society.
Hong, S. Y., and J. Dudhia, 2012: Next-generation numerical weather prediction: Bridging parameterization, explicit clouds, and large eddies. Bull. Amer. Meteor. Soc., 93(1), ES6−ES9, https://doi.org/10.1175/2011BAMS3224.1.
Inoue, J., B. Kosović, and J. A. Curry, 2005: Evolution of a storm-driven cloudy boundary layer in the Arctic. Bound.-Layer Meteorol., 117(2), 213−230, https://doi.org/10.1007/s10546-004-6003-2.
Inoue, J., J. P. Liu, J. O. Pinto, and J. A. Curry, 2006: Intercomparison of Arctic regional climate models: Modeling clouds and radiation for SHEBA in May 1998. J. Climate, 19(17), 4167−4178, https://doi.org/10.1175/JCLI3854.1.
Jiang, H. L., W. R. Cotton, J. O. Pinto, J. A. Curry, and M. J. Weissbluth, 2000: Cloud resolving simulations of mixed-phase Arctic stratus observed during BASE: Sensitivity to concentration of ice crystals and large-scale heat and moisture advection. J. Atmos. Sci., 57(13), 2105−2117, https://doi.org/10.1175/1520-0469(2000)057<2105:CRSOMP>2.0.CO;2.
Khairoutdinov, M. F., and D. A. Randall, 2003: Cloud resolving modeling of the ARM summer 1997 IOP: Model formulation, results, uncertainties, and sensitivities. J. Atmos. Sci., 60(4), 607−625, https://doi.org/10.1175/1520-0469(2003)060<0607:CRMOTA>2.0.CO;2.
Khanna, S., and J. G. Brasseur, 1998: Three-dimensional buoyancy-and shear-induced local structure of the atmospheric boundary layer. J. Atmos. Sci., 55(5), 710−743, https://doi.org/10.1175/1520-0469(1998)055<0710:TDBASI>2.0.CO;2.
Klein, S. A., and Coauthors, 2009: Intercomparison of model simulations of mixed-phase clouds observed during the ARM Mixed-Phase Arctic Cloud Experiment. I: Single-layer cloud. Quart. J. Roy. Meteor. Soc., 135(641), 979−1002, https://doi.org/10.1002/qj.416.
Kuettner, J., 1959: The band structure of the atmosphere. Tellus, 11(3), 267−294, https://doi.org/10.3402/tellusa.v11i3.9319.
Kuettner, J. P., 1971: Cloud bands in the earth’s atmosphere: Observations and theory. Tellus, 23(4−5), 404−426, https://doi.org/10.3402/tellusa.v23i4-5.10519.
Lane, D. E., R. C. J. Somerville, and S. F. Iacobellis, 2000: Sensitivity of cloud and radiation parameterizations to changes in vertical resolution. J. Climate, 13(5), 915−922, https://doi.org/10.1175/1520-0442(2000)013<0915:SOCARP>2.0.CO;2.
Lebo, Z. J., and Coauthors, 2017: Challenges for cloud modeling in the context of aerosol-cloud-precipitation interactions. Bull. Amer. Meteor. Soc., 98(8), 1749−1755, https://doi.org/10.1175/BAMS-D-16-0291.1.
Luo, Y., K.-M. Xu, H. Morrison, and G. McFarquhar, 2008: Arctic mixed-phase clouds simulated by a cloud-resolving model: Comparison with ARM observations and sensitivity to microphysics parameterizations. J. Atmos. Sci., 65(4), 1285−1303, https://doi.org/10.1175/2007JAS2467.1.
Moeng, C. H., and P. P. Sullivan, 1994: A comparison of shear- and buoyancy-driven planetary boundary layer flows. J. Atmos. Sci., 51(7), 999−1022, https://doi.org/10.1175/1520-0469(1994)051<0999:ACOSAB>2.0.CO;2.
Oue, M., M. Galletti, J. Verlinde, A. Ryzhkov, and Y. H. Lu, 2016: Use of X-band differential reflectivity measurements to study shallow Arctic mixed-phase clouds. J. Appl. Meteorol. Climatol., 55(2), 403−424, https://doi.org/10.1175/JAMC-D-15-0168.1.
Rao, G. S., and E. M. Agee, 1996: Large eddy simulation of turbulent flow in a marine convective boundary layer with snow. J. Atmos. Sci., 53(1), 86−100, https://doi.org/10.1175/1520-0469(1996)053<0086:LESOTF>2.0.CO;2.
Roeckner, E., and Coauthors, 2006: Sensitivity of simulated climate to horizontal and vertical resolution in the ECHAM5 atmosphere model. J. Climate, 19(16), 3771−3791, https://doi.org/10.1175/JCLI3824.1.
Salesky, S. T., M. Chamecki, and E. Bou-Zeid, 2017: On the nature of the transition between roll and cellular organization in the convective boundary layer. Bound.-Layer Meteorol., 163(1), 41−68, https://doi.org/10.1007/s10546-016-0220-3.
Savre, J., and A. M. L. Ekman, 2015: Large-eddy simulation of three mixed-phase cloud events during ISDAC: Conditions for persistent heterogeneous ice formation. J. Geophys. Res., 120(15), 7699−7725, https://doi.org/10.1002/2014JD023006.
Sikora, T., G. Young, R. Beal, F. Monaldo, and P. Vachon, 2006: Applications of synthetic aperture radar in marine meteorology. Atmosphere Ocean Interactions, 2, 83−105.
Skamarock, W. C., and Coauthors, 2008: A description of the advanced research WRF version 3. NCAR Technical Note NCAR/TN-475+STR, 113 pp, https://doi.org/10.5065/D68S4MVH.
Solomon, A., M. D. Shupe, O. Persson, H. Morrison, T. Yamaguchi, P. M. Caldwell, and G. de Boer, 2014: The sensitivity of springtime Arctic mixed-phase stratocumulus clouds to surface-layer and cloud-top inversion-layer moisture sources. J. Atmos. Sci., 71(2), 574−595, https://doi.org/10.1175/JAS-D-13-0179.1.
Stevens, D. E., A. S. Ackerman, and C. S. Bretherton, 2002: Effects of domain size and numerical resolution on the simulation of shallow cumulus convection. J. Atmos. Sci., 59(23), 3285−3301, https://doi.org/10.1175/1520-0469(2002)059<3285:EODSAN>2.0.CO;2.
Tallapragada, V., 2017: A11E-0075: Next generation community based unified global modeling system development and operational implementation strategies at NCEP. AGU 2017 Fall Meeting Abstracts, December 11−15, 2017, Ernest N. Morial Convention Center, New Orleans, Louisiana.
Tjernström, M., J. Sedlar, and M. D. Shupe, 2008: How well do regional climate models reproduce radiation and clouds in the Arctic? An evaluation of ARCMIP simulations J. Appl. Meteorol. Climatol., 47(9), 2405−2422, https://doi.org/10.1175/2008JAMC1845.1.
Weckwerth, T. M., J. W. Wilson, R. M. Wakimoto, and N. A. Crook, 1997: Horizontal convective rolls: Determining the environmental conditions supporting their existence and characteristics. Mon. Wea. Rev., 125(4), 505−526, https://doi.org/10.1175/1520-0493(1997)125<0505:HCRDTE>2.0.CO;2.
Weckwerth, T. M., T. W. Horst, and J. W. Wilson, 1999: An observational study of the evolution of horizontal convective rolls. Mon. Wea. Rev., 127(9), 2160−2179, https://doi.org/10.1175/1520-0493(1999)127<2160:AOSOTE>2.0.CO;2.
Wyngaard, J. C., 2004: Toward numerical modeling in the " terra incognita”. J. Atmos. Sci., 61, 1816−1826, https://doi.org/10.1175/1520-0469(2004)061<1816:TNMITT>2.0.CO;2.
Wyser, K., and Coauthors, 2008: An evaluation of Arctic cloud and radiation processes during the SHEBA year: Simulation results from eight Arctic regional climate models. Climate Dyn., 30(2−3), 203−223, https://doi.org/10.1007/s00382-007-0286-1.
Young, G. S., D. A. R. Kristovich, M. R. Hjelmfelt, and R. C. Foster, 2002: Rolls, streets, waves, and more: A review of quasi-two-dimensional structures in the atmospheric boundary layer. Bull. Amer. Meteor. Soc., 83(7), 997−1002, https://doi.org/10.1175/1520-0477(2002)083<0997:RSWAMA>2.3.CO;2.
Zhang, F. Q., Y. Q. Sun, L. Magnusson, R. Buizza, S. J. Lin, J. H. Chen, and K. Emanuel, 2019: What is the predictability limit of midlatitude weather? J. Atmos. Sci., 76, 1077−1091, https://doi.org/10.1175/JAS-D-18-0269.1.